Skip to main content
Log in

Three-dimensional Effect of Stresses on Inclined Open Stope Mine Design

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Highlights

  • Stability graph method and open stope mine design update

  • Induced stress prediction curves including inclined stopes

  • Finite volume method applied for underground mine design

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

The data that support the finding of this study are available from the corresponding author upon reasonable request.

References

  • Adoko AC, Vallejos J, Trueman R (2020) Stability assessment of underground mine stopes subjected to stress relaxation. Min Technol Trans Inst Min Metall 129(1):30–39. https://doi.org/10.1080/25726668.2020.1721995

    Article  Google Scholar 

  • Azorin JL (2022) Quantifying the influence of geological faults on the stability of open stopes back walls. Universidad de Chile, Chile

    Google Scholar 

  • Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–236. https://doi.org/10.1007/BF01239496

    Article  Google Scholar 

  • Bewick RP, Kaiser PK, (2009) Numerical assessment of factor B in Mathew’s method for open stope design. In Rockeng09

  • Capes GW (2009) Open stope hangingwall design based on general and detailed data collection in rock masses with unfavourable hangingwall conditions. University of Saskatchewan Saskatoon, Saskatoon

    Google Scholar 

  • Clark LM (1998) Minimizing dilution in open stope mining with a focus on stope design and narrow vein longhole blasting

  • Clark L, Pakalnis R (1997) An empirical design approach for estimating unplanned dilution from open stope hangingwalls and footwalls

  • Deere DU (1964) Technical description of rock cores for engineering purpose. Rock Mech Eng Geol 1(1):17–22

    Google Scholar 

  • Diederichs M, Hutchinson DJ (1999) Cablebolt layouts using the modified stability graph. CIM Bull. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  • Diederichs MS, Kaiser PK (1999) Tensile strength and abutment relaxation as failure control mechanisms in underground excavations. Int J Rock Mech Min Sci 36(1):69–96. https://doi.org/10.1016/S0148-9062(98)00179-X

    Article  Google Scholar 

  • FLAC3D 6.0 (2017) Theory and Background

  • Hadjigeorgiou J, Leclaire J, Potvin Y (1995) An update of the stability graph method of open stope design. pp 154–161

  • Hammah RE, Yacoub TE, Curran JH, (2009) Probabilistic slope analysis with the finite element method. in 43rd U.S. Rock Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium

  • Henning JG, Mitri HS (2007) Numerical modelling of ore dilution in blasthole stoping. Int J Rock Mech Min Sci 44(5):692–703. https://doi.org/10.1016/j.ijrmms.2006.11.002

    Article  Google Scholar 

  • Henning JG, Mitri HS (2008) Assessment and control of ore dilution in long hole mining: case studies. Geotech Geol Eng 26(4):349–366. https://doi.org/10.1007/s10706-008-9172-9

    Article  Google Scholar 

  • Hutchinson DJ, Diederichs M (1996) The cablebolting cycle-Underground support engineering. CIM Bull. 89(1001)

  • Jia H, Guan K, Zhu W, Liu H, Liu X (2020) Modification of rock stress factor in the stability graph method: a case study at the Alhada Lead-Zinc Mine in Inner Mongolia, China. Bull Eng Geol Environ 79(6):3257–3269. https://doi.org/10.1007/s10064-020-01753-7

    Article  Google Scholar 

  • Madenova Y, Suorineni FT (2020) On the question of original versus modified stability graph factors–a critical evaluation. Min Technol Trans Inst Min Metall 129(1):40–52. https://doi.org/10.1080/25726668.2020.1721996

    Article  Google Scholar 

  • Maii SGL (1997) Quantification and prediction of wall slough in open stope mining methods

  • Martin CD, Kaiser PK, Tannant DD, Yazici S, (1999) Stress path and instability around mine openings. In 9th ISRM Congress

  • Mathews E, Hoek WD, Stewart S, (1980) Prediction of stable excavation spans for mining below 1000 meters in hard rock

  • Mawdesley C (2002) Predicting rock mass cavability in block caving mines. University of Queensland, Brisbane

    Google Scholar 

  • Mawdesley C, Trueman R, Whiten WJ (2001) Extending the Mathews stability graph for open stope design. Min Technol. https://doi.org/10.1179/mnt.2001.110.1.27

    Article  Google Scholar 

  • Melo M, Pinto CL, lldefonso Gusmão Dutra J (2014) Potvin stability graph applied to brazilian geomechanic environment. Rem Rev Esc Minas 67(4):413–419. https://doi.org/10.1590/0370-44672014670171

    Article  Google Scholar 

  • Mitri HS, Hughes R, Zhang Y (2011) New rock stress factor for the stability graph method. Int J Rock Mech Min Sci 48(1):141–145. https://doi.org/10.1016/j.ijrmms.2010.09.015

    Article  Google Scholar 

  • Nickson SD (1992) Cable support guidelines for underground hard rock mine operations. Design

  • Pakalnis R (1986) Empirical stope design at ruttan mine. University of British Columbia, Vancouver

    Google Scholar 

  • Papaioanou A, Suorineni FT (2016) Development of a generalised dilution-based stability graph for open stope design. Trans Institutions Min Metall Sect A Min Technol 125(2):121–128. https://doi.org/10.1080/14749009.2015.1131940

    Article  Google Scholar 

  • Pérez E (2015) Modelamiento Numérico de Esfuerzos para Métodos Empíricos de Estabilidad de Caserones. Universidad de Chile, Chile

    Google Scholar 

  • Potvin Y (1988) Empirical open stope design in Canada. University of British Columbia, Vancouver

    Google Scholar 

  • Scoble MJ, Moss A (1994) Dilution in underground bulk mining: Implications for production management. Geol Soc Spec Publ. https://doi.org/10.1144/GSL.SP.1994.079.01.10

    Article  Google Scholar 

  • Stewart PC, Trueman R (2004) Quantifying the effect of stress relaxation on excavation stability. Inst Min Metall Trans Sect A Min Technol. https://doi.org/10.1179/037178404225004986

    Article  Google Scholar 

  • Stewart SB, Forsyth M, Forsyth W, Forsyth M (1995) The Mathew’s method for open stope design. CIM Bull 88(992):45–53

    Google Scholar 

  • Stewart P, Trueman R (2001) The extended Mathews stability graph: quantifying case history requirements and site-specific effects. Int. Symp

  • Suorineni FT (2010) The stability graph after three decades in use: experiences and the way forward. Int J Mining Reclam Environ 24(4):307–339. https://doi.org/10.1080/17480930.2010.501957

    Article  Google Scholar 

  • Suorineni FT, Tannant DD, Kaiser PK (2001) Incorporation of a fault factor into the stability graph method: kidd mine case studies. Miner Resour Eng 10(1):3–37. https://doi.org/10.1142/S0950609801000506

    Article  Google Scholar 

  • Tannant DDD, Diederichs MSS (1997) Cablebolt optimization in# 3. Mine Report to Shawn Seldon. Kidd Mine Division, Timmins, Ontario

    Google Scholar 

  • Trueman R, Mikula P, Mawdesley C, Harries N (2000) Experience in Australia with the application of the Mathew’s method for open stope design. CIM Bull 93(1036):162–167

    Google Scholar 

  • Vallejos JA, Díaz L (2020) A New Criterion for Numerical Modelling of Hangingwall Overbreak in Open Stopes. Rock Mech Rock Eng 53(10):4559–4581. https://doi.org/10.1007/s00603-020-02179-z

    Article  Google Scholar 

  • Vallejos JA, Delonca A, Fuenzalida J, Burgos L (2016) Statistical analysis of the stability number adjustment factors and implications for underground mine design. Int J Rock Mech Min Sci 87:104–112. https://doi.org/10.1016/j.ijrmms.2016.06.001

    Article  Google Scholar 

  • Vallejos JA, Delonca A, Perez E (2018) Three-dimensional effect of stresses in open stope mine design. Int J Mining Reclam Environ 32(5):355–374. https://doi.org/10.1080/17480930.2017.1309833

    Article  Google Scholar 

  • Villaescusa E (2014) Geotechnical design for sublevel open stoping. CRC Press, Boca Raton

    Book  Google Scholar 

  • Workbench R (2021), RStudio Workbench Administrator ’s Guide

Download references

Acknowledgements

This paper was partially funded by the CONICYT/PIA Project AFB220002 of the Advanced Mining Technology Center (AMTC) of the University of Chile. The authors thank Victor Silva and Oscar Barragan for their contribution to the preparation of this article. In addition, the authors thank ITASCA Chile SpA for providing FLAC3D for this study. Finally, authors thank Diane Greenstein for her support in editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Gómez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pino, J., Gómez, R., Marambio, E. et al. Three-dimensional Effect of Stresses on Inclined Open Stope Mine Design. Rock Mech Rock Eng 56, 4647–4657 (2023). https://doi.org/10.1007/s00603-023-03298-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-023-03298-z

Keywords

Navigation