Skip to main content
Log in

Assessing the Stability of Slopes Using Vector-Sum-Based Numerical Manifold Method and Pattern Search Algorithm

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The Numerical Manifold Method (NMM) has been considered as an effective analysis method for geotechnical problems. A vector-sum-based numerical manifold method (VSNMM) combined with a pattern search algorithm (PSA), termed VSNMM-PSA, is further proposed to assess the stability of slopes. In this numerical method, PSA is applied for the determination of failure surface location. With the stress field of the slope obtained from a NMM-based elastoplastic calculation, the vector sum method (VSM) is used to predict trial safety factors for a series of trial failure surfaces (TFSs) during the failure-surface determination process. Stability analyses about three standard slopes are investigated with the proposed VSNMM-PSA model. Numerical results indicate that slopes’ safety factors and failure surfaces can be accurately determined through the proposed VSNMM-PSA method. The proposed VSNMM-PSA method provides an effective tool to evaluate slopes’ stability, and may improve their designs.

Highlights

  • A vector-sum-based numerical manifold method combined with a pattern search algorithm is proposed.

  • Slopes’ safety factors and failure surfaces can be accurately determined through the proposed numerical model.

  • The proposed numerical model provides an effective tool to evaluate slopes’ stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adhikary DP, Dyskin AV, Jewell RJ, Stewart DP (1997) A study of the mechanism of flexural toppling failure of rock slopes. Rock Mech Rock Eng 30(2):75–93

    Article  Google Scholar 

  • Baker R (1980) Determination of the critical slip surface in slope stability computations. Int J Numer Anal Meth Geomech 4(4):333–359

    Article  Google Scholar 

  • Chen Z (2003) Earth slope stability analysis—Theory, method and programs. China Water Power Press, Beijing

    Google Scholar 

  • Fan LF, Yi XW, Ma GW (2013) Numerical manifold method (NMM) simulation of stress wave propagation through fractured rock. Int J Appl Mech 5:238–249

    Google Scholar 

  • Farias MM, Naylor DJ (1998) Safety analysis using finite elements. Comput Geotech 22:165–181

    Article  Google Scholar 

  • Findler NV, Lo C, Lo R (1987) Pattern search for optimization. Math Comput Simul 29(1):41–50

    Article  Google Scholar 

  • Fu XD, Sheng Q, Zhang YH, Chen J, Zhang SK, Zhang ZP (2017) Computation of the safety factor for slope stability using discontinuous deformation analysis and the vector sum method. Comput Geotech 92:68–76

    Article  Google Scholar 

  • Gao W (2016) Determination of the noncircular critical slip surface in slope stability analysis by meeting ant colony optimization. J Comput Civ Eng 30(2):06015001

    Article  Google Scholar 

  • Ge XR (2008) Deformation control law of rock fatigue failure, real-time X-ray CT scan of geotechnical testing, and new method of stability analysis of slopes and dam foundations. Chin J Geotech Eng 30(1):1–20

    Google Scholar 

  • Guo MW, Li CG, Wang SL, Yin SD, Liu SJ, Ge XR (2019) Vector-sum method for 2D slope stability analysis considering vector characteristics of force. Int J Geomech 19(6):04019058

    Article  Google Scholar 

  • Janbu N, 1973. Slope stability computations. In Embankment-Dam engineering: Casagrande volume, New York: Wiley, pp 47–86

  • Jiang QH, Deng SS, Zhou CB, Lu WB (2010) Modeling unconfined seepage flow using three-dimensional numerical manifold method. J Hydrodyn 22:554–561

    Article  Google Scholar 

  • Li YC, Chen YM, Zhan TL, Ling DS, Cleall PJ (2010) An efficient approach for locating the critical slip surface in slope stability analyses using a real-coded genetic algorithm. Can Geotech J 47(7):806–820

    Article  Google Scholar 

  • Liu G, Cai Y (2017) Slope stability analysis based on independent cover manifold method and vector sum method. Chin J Rock Mech Eng 36:1434–1442

    Google Scholar 

  • Liu F, Zhang K, Xu D (2020) Crack analysis using numerical manifold method with strain smoothing technique and corrected approximation for blending elements. Eng Anal Bound Elem 113:402–415. https://doi.org/10.1016/j.enganabound.2020.01.015

    Article  Google Scholar 

  • Mohammadnejad T, Khoei AR (2013) An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem Anal Des 73:77–95

    Article  Google Scholar 

  • Naylor DL, 1982. Finite elements and slope stability. In: Martins JB (eds) Numerical Methods in Geomechanics, Reidel Publishing Company, 229–244.

  • Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61(13):2316–2343

    Article  Google Scholar 

  • Shi GH (1991) Manifold method of material analysis. In: Proceedings of the transcations of the Ninth Army Confernece on Applied Mathematics and Computing, pp 57–76

  • Spencer E (1967) A method of analysis of embankments assuming parallel inter-slice forces. Geotechnique 17(1):11–26

    Article  Google Scholar 

  • Stutzle T, Hoos HH (2000) Max–min ant system. Future Gener Comput Syst-Int J Esci 6(8):889–914

    Article  Google Scholar 

  • Sun C, Zheng H, Li CG, Sun GH (2014) Critical slip surface search by using rigorous maximum residual thrust method based on ant colony algorithm. Rock Soil Mech 35(10):3021–3026

    Google Scholar 

  • Sun G, Cheng S, Jiang W, Zheng H (2016) A global procedure for stability analysis of slopes based on the Morgenstern-Price assumption and its applications. Comput Geotech 80:97–106

    Article  Google Scholar 

  • Tang H, Lui X, Xiong C, Wang Z, Eldin M (2016) Proof of nondeterministic polynomial-time complete problem for soil slope stability evaluation. Int J Geomech 16(5):C4015004

    Article  Google Scholar 

  • Tang XH, Rutqvist J, Hu MS, Rayudu NM (2019) Modeling three-dimensional fluid-driven propagation of multiple fractures using TOUGH-FEMM. Rock Mech Rock Eng 52(2):611–627

    Article  Google Scholar 

  • Wu Z, Wong LNY (2012) Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech 39(1):38–53

    Article  Google Scholar 

  • Wu W, Yang Y, Zheng H (2020) Hydro-mechanical simulation of the saturated and semi-saturated porous soil–rock mixtures using the numerical manifold method. Comput Methods Appl Mech Eng 370:113238. https://doi.org/10.1016/j.cma.2020.113238

    Article  Google Scholar 

  • Wu W, Wan T, Yang Y, Zheng H (2022a) Three-dimensional numerical manifold formulation with continuous nodal gradients for dynamics of elasto-plastic porous media. Comput Methods Appl Mech Eng 388:114203. https://doi.org/10.1016/j.cma.2021.114203

    Article  Google Scholar 

  • Wu W, Yang Y, Zheng H, Zhang L, Zhang N (2022b) Numerical manifold computational homogenization for hydro-dynamic analysis of discontinuous heterogeneous porous media. Comput Methods Appl Mech Eng 388:114254. https://doi.org/10.1016/j.cma.2021.114254

    Article  Google Scholar 

  • Xu JJ, Tang XH, Wang ZZ, Feng YF, Bian K (2020a) Investigating the softening of weak interlayers during landslides using nanoindentation experiments and simulations. Eng Geol 277:105801

    Article  Google Scholar 

  • Xu D, Wu A, Yang Y, Lu B, Liu F, Zheng H (2020b) A new contact potential based three-dimensional discontinuous deformation analysis method. Int J Rock Mecha Min Sci 127:104206. https://doi.org/10.1016/j.ijrmms.2019.104206

    Article  Google Scholar 

  • Yang Y, Zheng H (2017) Direct approach to treatment of contact in numerical manifold method. Int J Geomechan 17(5). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000714

  • Yang Y, Tang X, Zheng H, Liu Q, He L (2016) Three-dimensional fracture propagation with numerical manifold method. Eng Anal Bound Elem 72:65–77. https://doi.org/10.1016/j.enganabound.2016.08.008

    Article  Google Scholar 

  • Yang Y, Zheng H, Sivaselvan MV (2017) A rigorous and unified mass lumping scheme for higher-order elements. Comput Methods Appl Mech Eng 319:491–514. https://doi.org/10.1016/j.cma.2017.03.011

    Article  Google Scholar 

  • Yang Y, Xu D, Zheng H (2018a) Explicit discontinuous deformation analysis method with lumped mass matrix for highly discrete block system. Int J Geomechan 18(9):04018098. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001234

    Article  Google Scholar 

  • Yang Y, Tang X, Zheng H, Liu Q, Liu Z (2018b) Hydraulic fracturing modeling using the enriched numerical manifold method. Appl Math Model 53:462–486. https://doi.org/10.1016/j.apm.2017.09.024

    Article  Google Scholar 

  • Yang Y, Sun Y, Sun G, Zheng H (2019a) Sequential excavation analysis of soil-rock-mixture slopes using an improved numerical manifold method with multiple layers of mathematical cover systems. Eng Geol 261:105278. https://doi.org/10.1016/j.enggeo.2019.105278

    Article  Google Scholar 

  • Yang YT, Sun GH, Zheng H (2019b) Investigation of the sequential excavation of a soil-rock-mixture slope using the numerical manifold method. Eng Geol 256:93–109

    Article  Google Scholar 

  • Yang Y, Sun G, Zheng H, Yan C (2020a) An improved numerical manifold method with multiple layers of mathematical cover systems for the stability analysis of soil-rock-mixture slopes. Eng Geol 264:105373. https://doi.org/10.1016/j.enggeo.2019.105373

    Article  Google Scholar 

  • Yang Y, Xu D, Liu F, Zheng H (2020b) Modeling the entire progressive failure process of rock slopes using a strength-based criterion. Comput Geotech 126:103726. https://doi.org/10.1016/j.compgeo.2020.103726

    Article  Google Scholar 

  • Yang YT, Wu WA, Zheng H (2020c) Searching for critical slip surfaces of slopes using stress fields by numerical manifold method. J R Mech Geotech Eng 12:1313–1325

    Article  Google Scholar 

  • Yang Y, Wu W, Zheng H (2021a) An Uzawa-type augmented Lagrangian numerical manifold method for frictional discontinuities in rock masses. Int J Rock Mech Min Sci 148:104970. https://doi.org/10.1016/j.ijrmms.2021.104970

    Article  Google Scholar 

  • Yang Y, Wu W, Zheng H (2021b) Stability analysis of slopes using the vector sum numerical manifold method. Bull Eng Geol Environ 80(1):345–352. https://doi.org/10.1007/s10064-020-01903-x

    Article  Google Scholar 

  • Yang Y, Xia Y, Zheng H, Liu Z (2021c) Investigation of rock slope stability using a 3D nonlinear strength-reduction numerical manifold method. Eng Geol 292:106285. https://doi.org/10.1016/j.enggeo.2021.106285

    Article  Google Scholar 

  • Yang Y, Xu D, Zheng H, Wu Z, Huang D (2021d) Modeling wave propagation in rock masses using the contact potential-based three-dimensional discontinuous deformation analysis method. Rock Mech Rock Eng 54(5):2465–2490. https://doi.org/10.1007/s00603-020-02359-x

    Article  Google Scholar 

  • Zheng H, Tham LG, Liu DF (2006) On two definitions of the factor of safety commonly used in the finite element slope stability analysis. Comput Geotech 33:188–195

    Article  Google Scholar 

  • Zheng Y, Chen CX, Liu TT, Xia KZ, Liu XM (2018) Stability analysis of rock slopes against sliding or flexural-toppling failure. Bull Eng Geol Env 77:1383–1403

    Article  Google Scholar 

  • Zheng H, Yang Y, Shi G (2019) Reformulation of dynamic crack propagation using the numerical manifold method. Eng Anal Bound Elem 105:279–295. https://doi.org/10.1016/j.enganabound.2019.04.023

    Article  Google Scholar 

  • Zhuang X, Augarde CE, Mathisen KM (2012) Fracture modeling using meshless methods and level sets in 3D: framework and modeling. Int J Numer Meth Eng 92:969–998

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Zienkiewicz OC, Humpheson C, Lewis RW (1975) Associated and non-associated visco-plasticity in soil mechanics. Geotechnique 25(4):671–689

    Article  Google Scholar 

  • Zolfaghari AR, Heath AC, Mccombie PF (2005) Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Comput Geotech 32(3):139–152

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Youth Innovation Promotion Association CAS, under the Grant No. 2020327; the Young Top-notch Talent Cultivation Program of Hubei Province, and the National Natural Science Foundation of China, under the Grant Numbers 12072357 and 5213000723.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wu, W. Assessing the Stability of Slopes Using Vector-Sum-Based Numerical Manifold Method and Pattern Search Algorithm. Rock Mech Rock Eng 55, 3659–3673 (2022). https://doi.org/10.1007/s00603-022-02818-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-022-02818-7

Keywords

Navigation