Skip to main content
Log in

A New Dynamic Indentation Tool for Rapid Mechanical Properties Profiling and Mapping

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Surface measurements are used extensively in many industries and research disciplines to characterize a material’s mechanical properties and strength without the need for traditional, time consuming, and expensive laboratory tests, or for large volumes of sample material. This paper briefly reviews indentation methodologies for index and physical properties measurements and then focuses on the implementation of a method of using the measured force versus time of an impact to infer mechanical properties. By relying only on the measurement of force versus time, the method greatly simplifies the measurement process and thus allows for applications requiring rapid and automated measurements of both elastic stiffness and/or inelastic deformation during indentation. The indenter tip geometry, free-fall height, and the mechanical model used to describe the interaction of the contact between the indenter and material are investigated through the analysis of measurements performed on a wide variety of materials including plastics, rocks, ceramics, and asphalt. It is shown that using a spherical tip the method can be used to provide measurements of the elastic stiffness by fitting the measured force versus time curves to predictions of quasi static elastic theory. We then show how conversion of the force–time data into force–displacement curves realizes a direct connection with the already established static indentation interpretation framework. Through the use of force–displacement interpretation, the method becomes applicable to arbitrary tip geometries and inelastic mechanical properties. Through illustrative examples, we show how the force–displacement data from an impact can be interrogated for critical parameters such as loading and unloading characteristics, and maximum, residual, and elastic displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abid M, Geng J (2020) Effective attributes quantification to bridge gap between elastic properties and reservoir parameters in self-resource rocks. Sci Rep 10(1):1–14. https://doi.org/10.1038/s41598-020-59311-w

    Article  Google Scholar 

  • Bayuk Irina O, Ammerman Mike, Chesnokov Evgeni M (2008) Upscaling of elastic properties of anisotropic sedimentary rocks. Geophys J. https://doi.org/10.1111/j.1365-246X.2007.03645.x

    Article  Google Scholar 

  • Boitnott GN, Bussod GYA, McLure J (2014) Automatic Impulse Hammer for Characterization of Mechanical Properties of a Material, United States Patent, Pub. No.: US 2014/0245819 A1

  • Chang C, Zoback MD, Khaksar A (2006) Empirical relations between rock strength and physical properties in sedimentary rocks. J Pet Sci Eng 51:223–37. https://doi.org/10.1016/j.petrol.2006.01.003

  • Chen P, Han Q, Ma T, Lin D (2015) The mechanical properties of shale based on micro-indentation test. Pet Explor Dev 42(5):723–732. https://doi.org/10.1016/S1876-3804(15)30069-0

    Article  Google Scholar 

  • Choens RC, Chester FM (2018) Time-dependent consolidation in porous geomaterials at in Situ conditions of temperature and pressure. J Geophys Res Solid Earth 123(8):6424–6441. https://doi.org/10.1029/2017JB015097

    Article  Google Scholar 

  • Darrow MS, White WB, Roy R (1969) Micro-indentation hardness variation as a function of composition for polycrystalline solutions in the systems PbS/PbTe, PbSe/PbTe, and PbS/PbSe. J Mater Sci 4(4):313–319. https://doi.org/10.1007/BF00550400

    Article  Google Scholar 

  • Field JS, Swain MV, Dukino RD (2003) Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in. J Mater Res 18(6):1412–1419. https://doi.org/10.1557/JMR.2003.0194

    Article  Google Scholar 

  • Fischer-Cripps AC (2007) Introduction to contact mechanics, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Geng Z, Bonnelye A, Chen M, Jin Y, Dick P, David C, Fang X, Schubnel A (2017) Elastic anisotropy reversal during brittle creep in shale. Geophys Res Lett 44(21):10887–10895. https://doi.org/10.1002/2017GL074555

    Article  Google Scholar 

  • Gilman JJ (1975) Relationship between impact yield stress and indentation hardness. J Appl Phys 46(4):1435–1436. https://doi.org/10.1063/1.321790

    Article  Google Scholar 

  • Graham SP, Rouainia M, Aplin AC, Cubillas P, Fender TD, Armitage PJ (2020) Geomechanical characterisation of organic-rich calcareous shale using AFM and nanoindentation. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-020-02261-6

    Article  Google Scholar 

  • Gramin P, Fisher R, Frooqnia RA, Aiuyb A, Hojnacki P, Boitnott G, Louis L, Hampton J (2016) Evaluation of the impulse hammer technique for core mechanical properties profiling. International Symposium of the Society of Core Analysts, Colorado, pp 21–26

    Google Scholar 

  • Gutierrez M, Katsuki D, Tutuncu A (2014) Determination of the continuous stress-dependent permeability, compressibility and poroelasticity of shale. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2014.12.002

    Article  Google Scholar 

  • Hay, Jack C., and G.M. Pharr. 1998. “Exp Investigation of the Sneddon Solution and an Imporved Solution for the Analysis of Nanoindentation Data - Hay_pharr.Pdf.” Materials Research Society Symposium Proceedings.

  • Hertz H (1882) On the contact of elastic solids. J Reine Und Angewandte Mathematik 92:156–171

    Article  Google Scholar 

  • Hull KL, Abousleiman YN, Han Y, Al-Muntasheri GA, Peter Hosemann S, Parker S, Howard CB (2017) Nanomechanical characterization of the tensile modulus of rupture for Kerogen-Rich shale. SPE J. https://doi.org/10.2118/177628-pa

    Article  Google Scholar 

  • Johnson KL (1987) Contact mechanics. Cambridge University Press

    Google Scholar 

  • Keir D, McIntyre B, Hibbert T, Dixon R, Koster K, Mohamed F, Donald A et al (2011) Correcting sonic logs for shale anisotropy: a case study in the forties field. First Break 29(6):81–86

    Article  Google Scholar 

  • Liu F, Pengcheng Fu, Mellors RJ, Plummer MA, Ali ST, Reinisch EC, Liu Qi, Feigl KL (2018) Inferring geothermal reservoir processes at the raft river geothermal field, Idaho, USA, through modeling InSAR-measured surface deformation. J Geophys Res Solid Earth 123(5):3645–3666. https://doi.org/10.1029/2017JB015223

    Article  Google Scholar 

  • Louis L, Christian David V, Metz P, Robion B. Menéndez, Kissel C (2005) Microstructural control on the anisotropy of elastic and transport properties in undeformed sandstones. Int J Rock Mech Min Sci 42(7–8):911–23. https://doi.org/10.1016/j.ijrmms.2005.05.004

    Article  Google Scholar 

  • Louis L, David C, Špaček P, Wong TF, Fortin J, Song SR (2012) Elastic anisotropy of core samples from the Taiwan Chelungpu fault drilling project (TCDP): direct 3-D measurements and weak anisotropy approximations. Geophys J Int 188(1):239–252. https://doi.org/10.1111/j.1365-246X.2011.05247.x

    Article  Google Scholar 

  • Mazeran PE, Beyaoui M, Bigerelle M, Guigon M (2012) Determination of mechanical properties by nanoindentation in the case of viscous materials. Int J Mater Res 103(6):715–722. https://doi.org/10.3139/146.110687

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus (Young’s Modulus). Journal of Materials Research 7(6):1564–83. http://journals.cambridge.org.

  • Oliver W, Pharr G (2003) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:2–20

    Google Scholar 

  • Oyen ML, Cook RF (2009) A practical guide for analysis of nanoindentation data. J Mech Behav Biomed Mater 2(4):396–407. https://doi.org/10.1016/j.jmbbm.2008.10.002

    Article  Google Scholar 

  • Perrott CM (1977) Elastic-plastic indentation: hardness and fracture. Wear 45(3):293–309. https://doi.org/10.1016/0043-1648(77)90021-7

    Article  Google Scholar 

  • Pimienta L, Fortin J, Guéguen Y (2015) Bulk modulus dispersion and attenuation in sandstones bulk modulus dispersion and attenuation in sandstones. Geophysics. https://doi.org/10.1190/geo2014-0335.1

    Article  Google Scholar 

  • Rathbun AP, Carlson SR, Ewy RT, Hagin PN, Bovberg CA, Boitnott GN (2014) Non-Destructive Impulse Based Index Testing of Rock Core. 48th US Rock Mechanics. Geomechanics Symposium held in Minneapolis, MN, USA, 1–4

  • Reinisch EC, Cardiff M, Feigl KL (2018) Characterizing volumetric strain at brady hot springs, Nevada, USA using geodetic data, numerical models and prior information. Geophys J Int 215(2):1501–1513. https://doi.org/10.1093/GJI/GGY347

    Article  Google Scholar 

  • Sams Mark S (1995) Attenuation and anisotropy: the effect of extra fine layering. Geophysics 60(6):1646–55

    Article  Google Scholar 

  • Samuels LE, Mulhearn TO (1957) An experimental investigation of the deformed zone associated with indentation hardness impressions. J Mech Phys Solids 5(2):125–134. https://doi.org/10.1016/0022-5096(57)90056-X

    Article  Google Scholar 

  • Shukla P, Kumar V, Curtis M, Sondergeld CH, Rai CS (2013) Nanoindentation Studies on Shales. 47th US Rock Mechanics/Geomechanics Symposium 2:1194–1203

  • Tutuncu Azra N (1998) Nonlinear viscoelastic behavior of sedimentary rocks, part II: hysteresis effects and influence of type of fluid on elastic moduli. Geophysics 63(1):195–203

    Article  Google Scholar 

  • Tutuncu Azra N, Podiot Augusto L, Gregory Alvin R, Sharma Mukul M (1998) Nonlinear viscoelastic behavior of sedimentary rocks, part I: effect of frequency and strain amplitude. Geophysics 63(I):184–94

    Article  Google Scholar 

  • Vernik L, Liu XZ (1997) Velocity anisotropy in shales: a petrophysical study. Geophysics 62(2):521–532

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse C. Hampton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hampton, J.C., Boitnott, G.N. & Louis, L. A New Dynamic Indentation Tool for Rapid Mechanical Properties Profiling and Mapping. Rock Mech Rock Eng 55, 2597–2613 (2022). https://doi.org/10.1007/s00603-021-02626-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02626-5

Keywords

Navigation