Skip to main content
Log in

Modeling Wave Propagation in Rock Masses Using the Contact Potential-Based Three-Dimensional Discontinuous Deformation Analysis Method

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The most recently proposed three-dimensional (3D) contact potential-based discontinuous deformation analysis (3D-CPDDA) method is further applied for wave propagation problems in rock masses. A viscous non-reflecting boundary is incorporated into the 3D-CPDDA method to minimize the wave reflections. Furthermore, a force input method is incorporated to eliminate the contamination of scattered waves in the numerical solution and to accurately input the incident wave. Several benchmark problems about P-wave/S-wave propagation in homogeneous rock masses and jointed rock masses are solved to validate the modified 3D-CPDDA method. The numerical results assessed by the modified 3D-CPDDA method agree well with those obtained from analytical methods, which means that the modified 3D-CPDDA method can reliably and correctly simulate wave propagation in rock masses. The modified 3D-CPDDA method warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

\({\varvec{u}}\left( {\varvec{x}} \right)\) :

The displacement vector for an arbitrary point \({\varvec{x}}\)

\({\varvec{N}}\) :

The interpolation matrix corresponding to \({\varvec{u}}\left( {\varvec{x}} \right)\)

\({\varvec{d}}\) :

Degree of freedom for a block

\(\left( {x_{0} , { }y_{0} , { }z_{0} } \right)\) :

The centroid coordinates of concerned block

\(\left( {u_{0} , { }v_{0} , w_{0} } \right)\) :

The translation displacement of the rigid body at the centroid coordinates

\(\left( {\alpha_{0} , { }\beta_{0} , \gamma_{0} } \right)\) :

The rigid body rotation components of the concerned block

\(\left( {\varepsilon_{x} , { }\varepsilon_{y} , \varepsilon_{z} } \right)\) :

The normal strains of the concerned block

\(\left( {\gamma_{yz} , { }\gamma_{zx} , \gamma_{xy} } \right)\) :

The shear strains of the concerned block

\({\varvec{\sigma}}\) :

Cauchy stress tensor

\(\rho\) :

Mass density

\(t\) :

Time

D :

The elastic Hooke matrix

\({\Gamma }_{{\text{t}}}\) :

Traction boundary

\({\Gamma }_{{\text{u}}}\) :

Displacement boundary

\(\delta\) and \(\alpha\) :

The Newmark parameters

\(\sigma_{{\text{n}}}\) :

Normal viscous traction

\(\tau_{{{\text{s1}}}}\) and \(\tau_{{{\text{s2}}}}\) :

Two shear tractions

\(v_{{\text{n}}}\) :

Normal component of velocity vector

\(v_{{{\text{s1}}}}\) and \(v_{{{\text{s2}}}}\) :

Two shear components of velocity vector

\(c_{{\text{p}}}\) :

P-wave velocity

\(c_{{\text{s}}}\) :

S-wave velocity

T :

The coordinate transformation matrix

W :

The wave velocity matrix

\(C_{{\text{A}}}\) :

The wave impedance

\(\Delta t\) :

Time step size

\(\left| {T_{1} } \right|\) :

Transmission coefficient

\(K\) :

The normalized value of the joint stiffness

References

  • Bao HR, Hatzor YH, Huang X (2012) A new viscous boundary condition in the two-dimensional discontinuous deformation analysis method for wave propagation problems. Rock Mech Rock Eng 45:919–928

    Google Scholar 

  • Barla M, Piovano G, Grasselli G (2012) Rock slide simulation with the combined finite-discrete element method. Int J Geomech 12(6):711–721

    Google Scholar 

  • Beyabanaki SAR, Mikola RG, Hatami K (2008) Three-dimensional discontinuous deformation analysis (3-D DDA) using a new contact resolution algorithm. Comput Geotech 35(3):346–356

    Google Scholar 

  • Chen T, Yang Y, Zheng H, Wu Z (2019) Numerical determination of the effective permeability coefficient of soil–rock mixtures using the numerical manifold method. Int J Numer Anal Methods Geomech 43(1):381–414

    Google Scholar 

  • Cheng YM (1998) Advancements and improvement in discontinuous deformation analysis. Comput Geotech 22(2):153–163

    Google Scholar 

  • Choo LQ, Zhao Z, Chen H, Tian Q (2016) Hydraulic fracturing modeling using the discontinuous deformation analysis (DDA) method. Comput Geotech 76:12–22

    Google Scholar 

  • Fu XD, Sheng Q, Zhang YH, Chen J (2015a) Application of the discontinuous deformation analysis method to stress wave propagation through a one-dimensional rock mass. Int J Rock Mech Min Sci 80:155–170

    Google Scholar 

  • Fu XD, Sheng Q, Zhang YH, Zhou YQ, Dai F (2015b) Boundary setting method for the seismic dynamic response analysis of engineering rock mass structures using the discontinuous deformation analysis method. Int J Numer Anal Meth Geomech 39(15):1693–1712

    Google Scholar 

  • Goodman RE (1976) Methods of geological engineering in discontinuous rocks. Wiley, New York

    Google Scholar 

  • Gu J, Zhao ZY (2009) Considerations of the discontinuous deformation analysis on wave propagation problems. Int J Numer Anal Meth Geomech 33(12):1449–1465

    Google Scholar 

  • Jiang QH, Yeung MR (2004) A model of point-to-face contact for three-dimensional discontinuous deformation analysis. Rock Mech Rock Eng 37(2):95–116

    Google Scholar 

  • Jiang QH, Chen YF, Zhou CB, Yeung MR (2013) Kinetic energy dissipation and convergence criterion of discontinuous deformations analysis (dda) for geotechnical engineering. Rock Mech Rock Eng 46(6):1443–1460

    Google Scholar 

  • Jiao YY, Zhang XL, Zhao J, Liu QS (2007) Viscous boundary of DDA for modeling stress wave propagation in jointed rock. Int J Rock Mech Min Sci 44(7):1070–1076

    Google Scholar 

  • Jing L (1998) Formulation of discontinuous deformation analysis (DDA)-an implicit discrete element model for block systems. Eng Geol 49(3–4):371–381

    Google Scholar 

  • Jing L (2003) A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci 40(3):283–353

    Google Scholar 

  • Kottenstette JT (1999) DDA analysis of the RCC modification for Pueblo Dam. In: Proc. ICADD-3: Third Int. Conf. on Analysis of Discontinuous Deformation-From Theory to Practice, edited by B. Amadei, 127–132. Washington DC: American Rock Mechanics Association, Balkema

  • Li JC, Ma GW, Zhao J (2010) An equivalent viscoelastic model for rock mass with parallel joints. J Geophys Res-Solid Earth 115:B03305

    Google Scholar 

  • Liao ZP (2002) Introduction to wave motion theories in engineering, 2nd edn. The Science Publishing Company, Peking

    Google Scholar 

  • Lin CT, Amadei B, Jung J, Dwyer J (1996) Extensions of discontinuous deformation analysis for jointed rock masses. Int J Rock Mech Min Sci Geomech Abstr 33(7):671–694

    Google Scholar 

  • Lisjak A, Tatone BSA, Grasselli G et al (2014) Numerical modelling of the anisotropic mechanical behaviour of opalinus clay at the laboratory-scale using fem/dem. Rock Mech Rock Eng 47(1):187–206

    Google Scholar 

  • Liu T, Li X, Zheng Y, Luo Y, Guo Y, Cheng G, Zhang Z (2020) Study on S-wave propagation through parallel rock joints under in situ stress. Wave Random Complex Media. https://doi.org/10.1080/17455030.2020.1813350

    Article  Google Scholar 

  • Lysmer J, Kuhlemeyer RL (1969) Finite dynamic model for in finite media. J Eng Mech Div ASCE 95(4):859–877

    Google Scholar 

  • Lysmer J, Kuhlemeyer RL (1973) Finite element method accuracy for wave propagation problems. J Soil Mech Found Div ASCE 99(5):421–427

    Google Scholar 

  • Ma G, Zhou W, Chang XL, Yuan W (2014) Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles. Int J Geomech 14:4. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000372

    Article  Google Scholar 

  • Mahabadi OK, Cottrell BE, Grasselli G (2010) An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on Barre granite. Rock Mech Rock Eng 43(6):707–716

    Google Scholar 

  • Mohammadnejad T, Khoei AR (2013) An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem Anal Des 73:77–95

    Google Scholar 

  • Munjiza A (2004) The combined finite-discrete element method. Wiley, Hoboken

    Google Scholar 

  • Munjiza A, Latham JP (2004) Comparison of experimental and FEM/DEM results for gravitational deposition of identical cubes. Eng Comput 21(2/3/4):249–264

    Google Scholar 

  • Ning YJ, Zhao ZY (2013) A detailed investigation of block dynamic sliding by the discontinuous deformation analysis. Int J Numer Anal Meth Geomech 37(15):2373–2393

    Google Scholar 

  • Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61(13):2316–2343

    Google Scholar 

  • Schoenberg M (1980) Elastic wave behavior across linear slip interfaces. J Acoust Soc Am 68(5):1516–1521

    Google Scholar 

  • Shi GH (1988) Discontinuous deformation analysis—a new numerical model for the statics and dynamics of block systems. In: PhD Dissertation, Department of civil engineering, University of California, Berkeley

  • Shimizu H, Murata S, Ishida T (2011) The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int J Rock Mech Min Sci 48(5):712–727

    Google Scholar 

  • Tsesarsky Y, Hatzor YH (2006) Tunnel roof deflection in blocky rock masses as a function of joint spacing and friction—a parametric study using discontinuous deformation analysis (DDA). Tunn Undergr Space Technol 21(1):29–45

    Google Scholar 

  • Wu JH (2007) Applying discontinuous deformation analysis to assess the constrained area of the unstable Chiu-fen-erh-shan landslide slope. Int J Numer Anal Meth Geomech 31(5):649–666

    Google Scholar 

  • Wu ZJ, Fan LF (2014) The numerical manifold method for elastic wave propagation in rock with time-dependent absorbing boundary conditions. Eng Anal Bound Elem 46:41–50

    Google Scholar 

  • Xu DD, Wu AQ, Yang YT, Lu B, Liu F, Zheng H (2020) A new contact potential based three-dimensional discontinuous deformation analysis method. Int J Rock Mech Min Sci 127:104206

    Google Scholar 

  • Wu Z, Xu X, Liu Q, Yang Y (2018) A zero-thickness cohesive element-based numerical manifold method for rock mechanical behavior with micro-Voronoi grains. Eng Anal Bound Elem 96:94–108

    Google Scholar 

  • Wu W, Yang Y, Zheng H (2020) Enriched mixed numerical manifold formulation with continuous nodal gradients for dynamics of fractured poroelasticity. Appl Math Model 86:225–258

    Google Scholar 

  • Yan C, Zheng H, Sun G, Ge X (2016) Combined finite-discrete element method for simulation of hydraulic fracturing. Rock Mech Rock Eng 49(4):1389–1410

    Google Scholar 

  • Yan C, Jiao YY, Zheng H (2018) A fully coupled three-dimensional hydro-mechanical finite discrete element approach with real porous seepage for simulating 3D hydraulic fracturing. Comput Geotech 96:73–89

    Google Scholar 

  • Yang Y, Tang X, Zheng H, Liu Q, He L (2016) Three-dimensional fracture propagation with numerical manifold method. Eng Anal Bound Elem 72:65–77

    Google Scholar 

  • Yang YT, Tang XH, Zheng H, Liu QS, Liu ZJ (2018) Hydraulic fracturing modeling using the enriched numerical manifold method. Appl Math Model 53:462–486

    Google Scholar 

  • Yang Y, Sun Y, Sun G, Zheng H (2019a) Sequential excavation analysis of soil-rock-mixture slopes using an improved numerical manifold method with multiple layers of mathematical cover systems. Eng Geol 261:105278

    Google Scholar 

  • Yang Y, Sun G, Zheng H, Qi Y (2019b) Investigation of the sequential excavation of a soil-rock-mixture slope using the numerical manifold method. Eng Geol 256:93–109

    Google Scholar 

  • Yang Y, Sun G, Zheng H (2019c) Modeling unconfined seepage flow in soil-rock mixtures using the numerical manifold method. Eng Anal Bound Elem 108:60–70

    Google Scholar 

  • Yang Y, Wenan W, Zheng H (2020a) Searching for critical slip surfaces of slopes using stress fields by numerical manifold method. J Rock Mech Geotech Eng 12(6):1313–1325

    Google Scholar 

  • Yang Y, Dongdong X, Liu F, Zheng H (2020b) Modeling the entire progressive failure process of rock slopes using a strength-based criterion. Comput Geotech 126:103726

    Google Scholar 

  • Yang Y, Wu W, Zheng H, Liu X (2020c) A high-order three dimensional numerical manifold method with continuous stress/strain field. Eng Anal Bound Elem 117:309–320

    Google Scholar 

  • Yang Y, Sun G, Zheng H (2020d) A high-order numerical manifold method with continuous stress/strain field. Appl Math Model 78:576–600

    Google Scholar 

  • Yang Y, Sun G, Zheng H, Yan C (2020e) An improved numerical manifold method with multiple layers of mathematical cover systems for the stability analysis of soil-rock-mixture slopes. Eng Geol 264:105373

    Google Scholar 

  • Yang Y, Chen T, Zheng H (2020f) Mathematical cover refinement of the numerical manifold method for the stability analysis of a soil-rock-mixture slope. Eng Anal Bound Elem 116:64–76

    Google Scholar 

  • Yang Y, Wu W, Zheng H (2021) Stability analysis of slopes using the vector sum numerical manifold method. Bull Eng Geol Environ 80(1):345–352

    Google Scholar 

  • Zhang YH, Fu XD, Sheng Q (2014) Modification of the discontinuous deformation analysis method and its application to seismic response analysis of large underground caverns. Tunn Undergr Space Technol 40(1):241–250

    Google Scholar 

  • Zhang H, Liu S, Chen G (2016) Extension of three-dimensional discontinuous deformation analysis to frictional-cohesive materials. Int J Rock Mech Min Sci 86:65–79

    Google Scholar 

  • Zhao GF (2014) Modeling stress wave propagation in rocks by distinct lattice spring model. J Rock Mech Geotech Eng 6:348–355

    Google Scholar 

  • Zhao J, Cai JG, Zhao XB, Li HB (2006) Experimental study of ultrasonic wave attenuation across parallel fractures. Geomech Eng 1(2):87–103

    Google Scholar 

  • Zhao XB, Zhao J, Cai JG, Hefny AM (2008) UDEC modelling on wave propagation across fractured rock masses. Comput Geotech 35:97–104

    Google Scholar 

  • Zhao GF, Zhao XB, Zhu JB (2014) Application of the numerical manifold method for stress wave propagation across rock masses. Int J Numer Anal Meth Geomech 38:92–110

    Google Scholar 

  • Zhao L, Liu X, Mao J, Xu D, Munjiza A, Avital E (2018) A novel contact algorithm based on a distance potential function for the 3D discrete-element method. Rock Mech Rock Eng 51(12):3737–3769

    Google Scholar 

  • Zhu JB, Zhao GF, Zhao XB, Zhao J (2011) Validation study of the distinct lattice spring model (DLSM) on P-wave propagation across multiple parallel joints. Comput Geotech 38:298–304

    Google Scholar 

  • Zhuang X, Augarde CE, Mathisen KM (2012) Fracture modeling using meshless methods and level sets in 3D: framework and modeling. Int J Numer Meth Eng 92:969–998

    Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Acknowledgements

This study is supported by the Youth Innovation Promotion Association CAS, under Grant no. 2020327; and the National Natural Science Foundation of China, under Grant no. 12072357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongtao Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xu, D., Zheng, H. et al. Modeling Wave Propagation in Rock Masses Using the Contact Potential-Based Three-Dimensional Discontinuous Deformation Analysis Method. Rock Mech Rock Eng 54, 2465–2490 (2021). https://doi.org/10.1007/s00603-020-02359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02359-x

Keywords

Navigation