Skip to main content

A Comprehensive Experimental Study on Mechanical Behavior, Microstructure and Transport Properties of 3D-printed Rock Analogs


3D-printed (3DP) analogs of natural rocks have been used in laboratory tests concerning geomechanical and transport properties. Rock analogs manufactured by 3D printing can be used to manufacture batch of the samples with specified heterogeneity compared to natural rocks. Rock analogs were manufactured with silica sand (SS) and gypsum powder (GP) using binder jetting as well as with coated silica beads (CSB) using selective laser curing. The uniaxial and triaxial compressive tests were conducted to investigate the strength and deformation characteristics of 3DP rocks that were quantitatively compared with natural rocks. CSB and SS specimens experienced tensile failure, while the GP specimen has shown shear failure and shear-expansion behavior. The microstructural characteristics (e.g. grain shape, pore type, and bonding form) of the SS specimen were similar to a natural sandstone (Berea sandstone reported in the literature) with a relatively loose texture. In addition, 3DP rocks were more permeable than Berea sandstone (permeability of SS, CSB, and Berea sandstone was 12580.5 mD, 9840.5 mD, and 3950 mD, respectively). The effect of microscopic mechanical behavior on macroscopic strength and failure characteristics was investigated using scanning electronic microscopy. CSB and SS specimens could be suitable to simulate the transport behavior of the highly permeable sedimentary rocks. The GP specimen could be used to study the large deformation characteristics and creep failure mode of highly stressed soft rocks. Despite the early stage of 3DP rock analog studies, the potential applications could be expanded by controlling the physical properties (e.g. wettability and surface roughness).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Availability of data and material

All the data and materials used in this paper are available from the corresponding author upon request.


Download references


This paper is financially supported by National Science and Technology Major Project of China (Grant no. 2017ZX05013001-002); National Natural Science Foundation of China (Grant nos. 51909225, 51874262); King Abdullah University of Science and Technology (KAUST) (Grant no. BAS/1/1351-1301). The “Double First-Class Construction Fund” (Grant no. 20191230) from Southwest Petroleum University is great acknowledged. The China Scholarship Council is also acknowledged.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Yao Wang or Jianjun Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no competing financial interests with any other people or groups regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, R., Wang, Y., Ishutov, S. et al. A Comprehensive Experimental Study on Mechanical Behavior, Microstructure and Transport Properties of 3D-printed Rock Analogs. Rock Mech Rock Eng 53, 5745–5765 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • 3D printing
  • Compressive strength
  • Deformation and failure
  • Microstructure
  • Computed tomography