Skip to main content
Log in

Analysis of Fractured Rock Permeability Evolution Under Unloading Conditions by the Model of Elastoplastic Contact Between Rough Surfaces

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

a :

Contact area

a ec :

Elastic critical contact area

a epc :

Elastoplastic critical contact area

a l :

The largest contact area of asperity

A :

Sample cross-sectional area

A r :

The total real contact area

K :

Permeability

C :

Water compressibility

C f :

Fracture compressibility

E :

Young’s moduli

F :

Contact load

F ec :

Elastic critical contact load

F max :

Maximum contact load before unloading

F ne :

Contact load for elastic deformation

F nep :

Contact load for elastoplastic deformation

H :

Hardness of the asperity

K :

Hardness coefficient

L :

Sample length

R :

Radius of asperity

S d :

Maximum depth of valleys

S h :

Maximum absolute height

S m :

Arithmetical mean height

S p :

Maximum peak height

V u :

Volume of the upstream chamber

V d :

Volume of the downstream chamber

Y :

The yield strength of material

α :

The fitting parameter of the pressure decay curve

δ :

Normal displacement

μ :

Fluid viscosity

ν :

Poisson’s ratio

ω :

Deformation of the asperity

ω c :

Critical deformation at the inception of plastic deformation

ω max :

Maximum contact interference before unloading

ω res :

Residual contact interference after complete unloading

References

  • Brace WF, Walsh JB, Frangos WT (1968) Permeability of granite under high pressure. J Geophys Res 73:2225–2236. https://doi.org/10.1029/JB073i006p02225

    Article  Google Scholar 

  • Brown SR, Scholz CH (1985) Closure of random elastic surfaces in contact. J Geophys Res: Solid Earth 90(B7):5531–5545

    Article  Google Scholar 

  • Brown SR, Scholz CH (1986) Closure of rock joints. J Geophys Res: Solid Earth 91(B5):4939–4948

    Article  Google Scholar 

  • Chang WR, Etsion I, Bogy DB (1987) An Elastic-Plastic Model for the Contact of Rough Surfaces. ASME J Tribol 109:257–263

    Article  Google Scholar 

  • Chang WR, Etsion I, Bogy DB (1988) Static friction coefficient model for metallic rough surfaces. ASME J Tribol 110:57–63

    Article  Google Scholar 

  • Chen Y, Cao P, Chen R, Teng Y (2010) Effect of water-rock interaction on the morphology of a rock surface. Int J Rock Mech Min Sci 47(5):816–822

    Article  Google Scholar 

  • Chen D, Pan ZJ, Ye ZH (2015) Dependence of gas shale fracture permeability on effective stress and reservoir pressure: model match and insights. Fuel 139:383–392

    Article  Google Scholar 

  • Connell LD (2016) A new interpretation of the response of coal permeability to changes in pore pressure, stress and matrix shrinkage. Int J Coal Geol 162:169–182

    Article  Google Scholar 

  • Cook NGW (1992) Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int J Rock Mech Min SciGeomechAbstr 29(3):198–223

    Article  Google Scholar 

  • Davy CA, Skoczylas F, Barnichon JD, Lebon P (2007) Permeability of macro-cracked argillite under confinement: gas and water testing. PhysChem Earth Parts A/B/C 32:667–680

    Article  Google Scholar 

  • Dong JJ, Hsu JY, Wu WJ, Shimamoto T, Hung JH, Yeh EC, Wu YH, Sone H (2010) Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. Int J Rock Mech Min Sci 47:1141–1157

    Article  Google Scholar 

  • Etsion I, Kligerman Y, Kadin Y (2005) Unloading of an elastic–plastic loaded spherical contact. Int J Solids Struct 42(13):3716–3729

    Article  Google Scholar 

  • Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R SocLondA 295:300–319

    Google Scholar 

  • Jiang C, Duan M, Yin G, Wang J, Lu T, Xu J, Zhang D, Huang G (2017) Experimental study on seepage properties, AE characteristics and energy dissipation of coal under tiered cyclic loading. EngGeol 221:114–123

    Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kogut L, Etsion I (2002) Elastic–plastic contact analysis of a sphere and a rigid flat. ASME J ApplMech 69:657–662

    Article  Google Scholar 

  • Li B, Jiang YJ, Koyama T, Jing L, Tanabashi Y (2008) Experimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures. Rock Mech Rock Eng 45:362–375

    Google Scholar 

  • Li B, Liu RC, Jiang YJ (2019a) An experimental method to visualize shear-induced channelization of fluid flow in a rough-walled fracture. Hydrogeol J 27:3097–3106

    Article  Google Scholar 

  • Li SC, Gao CL, Zhou ZQ, Li LP, Wang MX, Yuan YC, Wang J (2019b) Analysis on the precursor information of water inrush in karst tunnels: a true triaxial model test study. Rock Mech Rock Eng 52:373–384

    Article  Google Scholar 

  • Liu HH, Rutqvist J (2010) A new coal-permeability model: internal swelling stress and fracture- matrix interaction. Transp Porous Media 82:157–171

    Article  Google Scholar 

  • Qiu SL, Feng XT, Xiao JQ, Zhang CQ (2014) An experimental study on the pre-peak unloading damage evolution of marble. Rock Mech Rock Eng 47(2):401–419

    Article  Google Scholar 

  • Sharifzadeh M, Mitani Y, Esaki T (2008) Rock joint surfaces measurement and analysis of aperture distribution under different normal and shear loading using GIS. Rock Mech Rock Eng 41(2):299–323

    Article  Google Scholar 

  • Shi J, Durucan S (2004) Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery. Transp Porous Media 56:1–16

    Article  Google Scholar 

  • Singh KK, Singh DN, Ranjith PG (2015) Laboratory simulation of flow through single fractured granite. Rock Mech Rock Eng 48(3):987–1000

    Article  Google Scholar 

  • Tang ZC, Jiao YY, Wong LNY (2017) Theoretical model with multi-asperity interaction for the closure behavior of rock joint. Int J Rock Mech Min Sci 97:15–23

    Article  Google Scholar 

  • Vogler D, Amann F, Bayer P, Elsworth D (2016) Permeability evolution in natural fractures subject to cyclic loading and gouge formation. Rock Mech Rock Eng 49:3463–3479

    Article  Google Scholar 

  • Wang K, Zang J, Wang G, Zhou A (2014) Anisotropic permeability evolution of coal with effective stress variation and gas sorption: model development and analysis. Int J Coal Geol 130:53–65

    Article  Google Scholar 

  • Wang CL, Pan L, Zhao Y, Zhang Y, Shen W (2019) Analysis of the pressure-pulse propagation in rock: a new approach to simultaneously determine permeability, porosity, and adsorption capacity. Rock Mech Rock Eng 52:4301–4317

    Article  Google Scholar 

  • Yang DS, Qi XY, Chen WZ, Wang SG, Yang JP (2018) Anisotropic permeability of coal subjected to cyclic loading and unloading. Int J Geomech 18(8):04018093

    Article  Google Scholar 

  • Yuan Y, Cheng Y, Liu K, Gan L (2017) A revised Majumdar and Bushan model of elastoplastic contact between rough surfaces. Appl SurfSci 425:1138–1157

    Article  Google Scholar 

  • Yuan Y, Cheng J, Zhang L (2018) Loading-unloading contact model between three-dimensional fractal rough surfaces. AIP Adv 8:075017. https://doi.org/10.1063/1.5027437

    Article  Google Scholar 

  • Zait Y, Kligerman Y, Etsion I (2010) Unloading of an elastic–plastic spherical contact under stick contact condition. Int J Solids Struct 47:990–997

    Article  Google Scholar 

  • Zhang Y, Chai JR (2020) Effect of surface morphology on fluid flow in rough fractures: a review. J Nat Gas SciEng 79:103343

    Article  Google Scholar 

  • Zhang Z, Zhang R, Xie H, Gao M, Xie J (2016) Mining-induced coal permeability change under different mining layouts. Rock Mech Rock Eng 49(9):3753–3768

    Article  Google Scholar 

  • Zhang C, Tu S, Zhang L (2017) Analysis of broken coal permeability evolution under cyclic loading and unloading conditions by the model based on the Hertz contact deformation principle. Transp Porous Med 119:739–754

    Article  Google Scholar 

  • Zhang C, Zhang L, Zhao Y, Wang W (2018) Experimental study of stress–permeability behavior of single persistent fractured coal samples in the fractured zone. J GeophysEng 15:2159–2170

    Google Scholar 

  • Zhang ZZ, Deng M, Bai JB, Yu XY, Wu QH, Jiang LS (2020) Strain energy evolution and conversion under triaxial unloading confining pressure tests due to gob-side entry retained. Int J Rock Mech Min Sci 126:104184. https://doi.org/10.1016/j.ijrmms.2019.104184

    Article  Google Scholar 

  • Zhao YS, Hu YQ, Wei JP, Yang D (2003) The experimental approach to effective stress law of coal mass by effect of methane. Transp Porous Med 53(3):235–244

    Article  Google Scholar 

  • Zhao YL, Zhang LY, Wang WJ, Tang JZ, Lin H, Wan W (2017) Transient pulse test and morphological analysis of single rock fractures. Int J Rock Mech Min Sci 91:139–154

    Article  Google Scholar 

  • Zhao Y, He PF, Zhang YF, Wang CL (2019a) A new criterion for a toughness-dominated hydraulic fracture crossing a natural frictional interface. Rock Mech Rock Eng 52:2617–2629

    Article  Google Scholar 

  • Zhao Y, Wang CL, Zhang YF, Liu Q (2019b) Experimental study of adsorption effects on shale permeability. Nat Resour Res 28(4):1575–1586

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No.51374257 and No. 50804060), the Science and Technology Support Project of Guizhou (No. [2020]4Y044) and No. [2018]2787), the Research Fund for Talents of Guizhou University (Grant No. 201901), and the Special Research Funds of Guizhou University (Grant No. 201903). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, C.L. & Bi, J. Analysis of Fractured Rock Permeability Evolution Under Unloading Conditions by the Model of Elastoplastic Contact Between Rough Surfaces. Rock Mech Rock Eng 53, 5795–5808 (2020). https://doi.org/10.1007/s00603-020-02224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02224-x

Keywords

Navigation