Skip to main content
Log in

Evaluation of the Use of UAV Photogrammetry for Rock Discontinuity Roughness Characterization

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper describes the results of a field investigation with the objective of evaluating the possibility to produce drone-derived 3D digital point clouds sufficiently dense and accurate to determine discontinuity surface roughness characteristics. A discontinuous rock mass in Italy was chosen as the investigation site and Structure from Motion and Multi-View Stereo techniques adopted for producing three-dimensional point clouds from the two-dimensional image sequences. Since the roughness of discontinuities depends on direction, scale and resolution of the sampling, data were always collected along the maximum slope gradient. The scale effect was evaluated by analysing discontinuity profiles of different lengths (10 cm, 30 cm, 60 cm and 100 cm), with measurements taken from drone flights flown at different distances from the rocky slopes (10 m, 20 m and 30 m). The accuracy of the derived joint roughness coefficients was evaluated by direct comparison with discontinuity profiles measured during fieldwork using conventional techniques and from contemporaneous terrestrial laser scanning. Results from this research show that 3D digital point clouds, derived from the processing of drone-flight images, were successfully used for reliable representation of discontinuity roughness for profiles longer than 60 cm, whereas less reliable results were achieved for shorter profile lengths. This, even if strictly related to this case study since several factors can affect the minimum profile length, represents a significant contribution to improve the knowledge on the use of remotely captured data for characterising the discontinuities in natural or man-made rock outcrops, particularly where access difficulties do not allow conventional engineering-geological surveys to be undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agisoft (2016) Agisoft Photoscan user manual professional edition, version 1.2.5. Agisoft. https://www.agisoft.com/pdf/photoscan-pro_1_2_5_en.pdf. Accessed 20 Apr 2020

  • Assali P, Grussenmeyer P, Villemin T et al (2014) Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: semi-automatic approaches for linear outcrop inspection. J Struct Geol 66:102–114. https://doi.org/10.1016/j.jsg.2014.05.014

    Article  Google Scholar 

  • Baker BR, Gessner K, Holden E-J, Squelch AP (2008) Automatic detection of anisotropic features on rock surfaces. Geosphere 4:418–428. https://doi.org/10.1130/ges00145.1

    Article  Google Scholar 

  • Barton N (1973) Review of a new shear-strength criterion for rock joints. Eng Geol 7:287–332. https://doi.org/10.1016/0013-7952(73)90013-6

    Article  Google Scholar 

  • Barton N (1982) Modelling rock joint behaviour from in situ block tests: implications for nuclear waste repository design. Technical Report, Terra Tek, Inc., Salt Lake City, United States

  • Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech Felsmechanik Mécanique des Roches 10:1–54. https://doi.org/10.1007/BF01261801

    Article  Google Scholar 

  • Bitenc M, Scott Kieffer D, Khoshelham K, Vezočnik R (2015) Quantification of rock joint roughness using terrestrial laser scanning. In: Engineering Geology for Society and Territory—Volume 6: applied geology for major engineering projects, pp 835–838

  • Bonini M (1999) Basement-controlled Neogene polyphase cover thrusting and basin development along the Chianti Mountains ridge (Northern Apennines, Italy). Geol Mag 136:133–152. https://doi.org/10.1017/S0016756899002277

    Article  Google Scholar 

  • Bortolotti V, Passerini P, Sagri M, Sestini G (1970) The miogeosynclinal sequences. Sediment Geol 4:341–444. https://doi.org/10.1016/0037-0738(70)90019-9

    Article  Google Scholar 

  • Bretar F, Arab-Sedze M, Champion J et al (2013) An advanced photogrammetric method to measure surface roughness: application to volcanic terrains in the Piton de la Fournaise, Reunion Island. Remote Sens Environ 135:1–11. https://doi.org/10.1016/j.rse.2013.03.026

    Article  Google Scholar 

  • Canuti P, Focardi P, Sestini G (1965) Stratigrafia, correlazione e genesi degli scisti policromi dei monti del Chianti (Toscana). Boll Soc Geol Ital 84(6):93–166

    Google Scholar 

  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens 92:79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

    Article  Google Scholar 

  • Corradetti A, McCaffrey K, De Paola N, Tavani S (2017) Evaluating roughness scaling properties of natural active fault surfaces by means of multi-view photogrammetry. Tectonophysics 717:599–606. https://doi.org/10.1016/j.tecto.2017.08.023

    Article  Google Scholar 

  • Deliormanli AH, Maerz NH, Otoo J (2014) Using terrestrial 3D laser scanning and optical methods to determine orientations of discontinuities at a granite quarry. Int J Rock Mech Min Sci 66:41–48. https://doi.org/10.1016/j.ijrmms.2013.12.007

    Article  Google Scholar 

  • Elter FM, Sandrelli F (1994) Inquadramento strutturale dei Monti del Chianti. Boll della Soc Geol Ital 114:537–547

    Google Scholar 

  • Fan W, Cao P (2019) A new 3D JRC calculation method of rock joint based on laboratory-scale morphology testing and its application in shear strength analysis. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-019-01569-0

    Article  Google Scholar 

  • Fazzuoli M, Pandeli E, Sani F (1994) Considerations on the sedimentary and structural evolution of the Tuscan Domain since early Liassic to Tortonian. In: Proceedings of the 76th summer meeting of the Societa Geologica Italiana; The Northern Apennines; Part 1, The Tuscan Nappe, the ophiolitic sequences, the turbiditic successions, pp 31–50

  • Fazzuoli M, Pandeli E, Sandrelli F (1996) Nuovi dati litostratigrafici sulla Scaglia Toscana (Scisti Policromi) dei Monti del Chianti (Appennino Settentrionale). Atti Soc Toscana di Sci Nat 103:95–104

    Google Scholar 

  • Fazzuoli M, Pandeli E, Sandrelli F (2004) The Mesozoic to tertiay succession of the Northern Monti del Chianti: recent stratigraphic and tectonic advances. In: D M, P B (eds) The “Regione Toscana” Project of Geological Mapping: Case histories and data acquisition. Regione Toscana, Servizio Geologico Regionale, pp 187–198

  • Feng Q, Fardin N, Jing L, Stephansson O (2003) A new method for in situ non-contact roughness measurement of large rock fracture surfaces. Rock Mech Rock Eng 36:3–25. https://doi.org/10.1007/s00603-002-0033-1

    Article  Google Scholar 

  • Firpo G, Salvini R, Francioni M, Ranjith PG (2011) Use of digital terrestrial photogrammetry in rocky slope stability analysis by distinct elements numerical methods. Int J Rock Mech Min Sci 48:1045–1054. https://doi.org/10.1016/j.ijrmms.2011.07.007

    Article  Google Scholar 

  • Fonstad MA, Dietrich JT, Courville BC et al (2013) Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf Process Landf 38:421–430. https://doi.org/10.1002/esp.3366

    Article  Google Scholar 

  • Francioni M, Salvini R, Stead D, Litrico S (2014) A case study integrating remote sensing and distinct element analysis to quarry slope stability assessment in the Monte Altissimo area, Italy. Eng Geol 183:290–302. https://doi.org/10.1016/j.enggeo.2014.09.003

    Article  Google Scholar 

  • Francioni M, Salvini R, Stead D et al (2015) An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: slope stability assessment through kinematic and numerical methods. Comput Geotech 67:46–63. https://doi.org/10.1016/j.compgeo.2015.02.009

    Article  Google Scholar 

  • Gallup D, Frahm JM, Mordohai P, et al (2007) Real-time plane-sweeping stereo with multiple sweeping directions. In: Proceedings of the IEEE Computer Society Conference on computer vision and pattern recognition, p 9

  • Ge Y, Tang H, Eldin MAME et al (2015) A description for rock joint roughness based on terrestrial laser scanner and image analysis. Sci Rep 5:16999. https://doi.org/10.1038/srep16999

    Article  Google Scholar 

  • Goesele M, Snavely N, Curless B, et al (2007) Multi-view stereo for community photo collections. In: Proceedings of the IEEE International Conference on Computer Vision. p 8

  • Grasselli G, Egger P (2003) Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int J Rock Mech Min Sci 40:25–40. https://doi.org/10.1016/S1365-1609(02)00101-6

    Article  Google Scholar 

  • Grasselli G, Wirth J, Egger P (2002) Quantitative three-dimensional description of a rough surface and parameter evolution with shearing. Int J Rock Mech Min Sci 39:789–800. https://doi.org/10.1016/S1365-1609(02)00070-9

    Article  Google Scholar 

  • Haneberg WC (2008) Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bull Eng Geol Environ 67:457–469. https://doi.org/10.1007/s10064-008-0157-y

    Article  Google Scholar 

  • Haneberg WC, Norrish NI, Findley DP (2006) Digital outcrop characterization for 3-D structural mapping and rock slope design along interstate 90 near Snoqualmie Pass, Washington. In: Proceedings, 57th annual highway geology symposium, Breckenridge, Colorado, p 14

  • Heritage GL, Milan DJ (2009) Terrestrial laser scanning of grain roughness in a gravel-bed river. Geomorphology 113:4–11. https://doi.org/10.1016/j.geomorph.2009.03.021

    Article  Google Scholar 

  • ISRM (1978) International society for rock mechanics commission on standardization of laboratory and field tests. In: Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci

  • Jancosek M, Shekhovtsov A, Pajdla T (2009) Scalable multiview stereo. In: IEEE Workshop on 3D Digital Imaging and Modeling. p 8

  • Karekal S, Poropat G, Guo H (2013) Experimental and numerical assessment of shear surface damage using 3D point clouds. International Symposium on Slope Stability in Open Pit Mining and Civil Engineering. Perth, Australia, pp 273–280

    Google Scholar 

  • Kersten TP (2006) Combination and comparison of digital photogrammetry and terrestrial laser scanning for the generation of virtual models in cultural heritage applications. In: 7th Int. Symp. Virtual Reality, Archaeol. Cult. Herit, p 10

  • Khoshelham K, Altundag D, Ngan-Tillard D, Menenti M (2011) Influence of range measurement noise on roughness characterization of rock surfaces using terrestrial laser scanning. Int J Rock Mech Min Sci 48:1215–1223. https://doi.org/10.1016/j.ijrmms.2011.09.007

    Article  Google Scholar 

  • Kim D, Gratchev I, Poropat G (2013a) The determination of joint roughness coefficient using three-dimensional models for slope stability analysis. International Symposium on Slope Stability in Open Pit Mining and Civil Engineering. Perth, Australia, pp 281–289

    Google Scholar 

  • Kim DH, Gratchev I, Balasubramaniam A (2013b) Determination of joint roughness coefficient (JRC) for slope stability analysis: a case study from the Gold Coast area, Australia. Landslides 10:657–664. https://doi.org/10.1007/s10346-013-0410-8

    Article  Google Scholar 

  • Kim DH, Poropat G, Gratchev I, Balasubramaniam A (2016) Assessment of the accuracy of close distance photogrammetric jrc data. Rock Mech Rock Eng 49:4285–4301. https://doi.org/10.1007/s00603-016-1042-9

    Article  Google Scholar 

  • Kim DH, Balasubramaniam AS, Gratchev I (2018) Application of photogrammetry and image analysis for rock slope investigation. Geotech Eng J SEAGS AGSSEA 49:49–56

    Google Scholar 

  • Maerz NH, Franklin JA, Bennett CP (1990) Joint roughness measurement using shadow profilometry. Int J Rock Mech Min Sci 27:329–343. https://doi.org/10.1016/0148-9062(90)92708-M

    Article  Google Scholar 

  • Marsch K, Wernecke C (2015) Mapping rock surface roughness with photogrammetry. In: Schubert Kluckner (ed) EUROCK 2015 & Geomechanics Colloquium. Salzburg, Austria, pp 1175–1180

    Google Scholar 

  • Mastrorocco G, Salvini R, Vanneschi C (2018) Fracture mapping in challenging environment: a 3D virtual reality approach combining terrestrial LiDAR and high definition images. Bull Eng Geol Environ 77:691–707. https://doi.org/10.1007/s10064-017-1030-7

    Article  Google Scholar 

  • Merla G (1951) Geologia dell’Appennino settentrionale. Boll Della Soc Geol Ital 70:95–382

    Google Scholar 

  • Mills G, Fotopoulos G (2013) On the estimation of geological surface roughness from terrestrial laser scanner point clouds. Geosphere 9:1410–1416. https://doi.org/10.1130/GES00918.1

    Article  Google Scholar 

  • Milne D, Hawkes C, Hamilton C (2009) A new tool for the field characterization of joint. In: Diederichs M, Grasselli G (eds) 3rd CANUS Rock Mechanics Symposium. Canada, Toronto, p 11

    Google Scholar 

  • Myers NO (1962) Characterization of surface roughness. Wear 5:182–189

    Article  Google Scholar 

  • Nilsson M, Wulkan F (2011) Determination of joint shear strength using photogrammetry. Luleå University of Technology, Luleå, Sweden

    Google Scholar 

  • Nocchi M (1960) Osservazioni sulla stratigrafia e cenni sulla tettonica della parte meridionale dei Monti del Chianti. Boll Della Soc Geol Ital 79:217–356

    Google Scholar 

  • Pandeli E, Fazzuoli M, Sandrelli F et al (2018) The scaglia toscana formation of the monti del chianti: new lithostratigraphic and biostratigraphic data. Ital J Geosci 137:38–61. https://doi.org/10.3301/IJG.2017.16

    Article  Google Scholar 

  • Patton FD (1966) Multiple modes of shear failure in rock and related materials. University of Illinois, Urbana–Champaign, USA

    Google Scholar 

  • Poropat G (2008) Remote characterization of surface roughness of rock discontinuities. In: Potvin Y, Carte J, Dyskin A, Jeffrey R (eds) International Rock Mechanics Symposium, Perth, pp 447–458

  • Poropat G V (2009) Measurement of surface roughness of rock discontinuities. In: ROCKENG09: Proceedings of the 3rd CANUS Rock Mechanics Symposium, p 9

  • Riquelme A, Cano M, Tomás R, Abellán A (2017) Identification of rock slope discontinuity sets from laser scanner and photogrammetric point clouds: a comparative analysis. Proc Eng 191:838–845. https://doi.org/10.1016/j.proeng.2017.05.251

    Article  Google Scholar 

  • Salvini R, Francioni M, Riccucci S et al (2011) Stability analysis of “Grotta delle Felci” Cliff (Capri Island, Italy): structural, engineering-geological, photogrammetric surveys and laser scanning. Bull Eng Geol Environ 70:549–557

    Article  Google Scholar 

  • Salvini R, Mastrorocco G, Seddaiu M et al (2017) The use of an unmanned aerial vehicle for fracture mapping within a marble quarry (Carrara, Italy): photogrammetry and discrete fracture network modeling. Geomat Nat Hazards Risk 8:34–52. https://doi.org/10.1080/19475705.2016.1199053

    Article  Google Scholar 

  • Salvini R, Mastrorocco G, Esposito G et al (2018) Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy). Nat Hazards Earth Syst Sci 18:287–302. https://doi.org/10.5194/nhess-18-287-2018

    Article  Google Scholar 

  • Schmidt A, Schilling A, Maas H-G (2012) A method for the registration of hemispherical photographs and TLS intensity images. In: ISPRS—International Archives of the photogrammetry, remote sensing and spatial information sciences, p 5

  • Schneider D, Schwalbe E (2008) Integrated processing of terrestrial laser scanner data and Fisheye-camera image data. In: International Archives of photogrammetry, remote sensing and spatial information science. p 6

  • Schwalbe E, Maas HG, Kenter M, Wagner S (2009) Hemispheric image modeling and analysis techniques for solar radiation determination in forest ecosystems. Photogramm Eng Remote Sens 4:375–384. https://doi.org/10.14358/PERS.75.4.375

    Article  Google Scholar 

  • Sirkiä J, Kallio P, Iakovlev D, Uotinen L (2016) Photogrammetric calculation of JRC for rock slope support design. In: Nordlund E, Jones T, Eitzenberger A (eds) Proceedings of the 8th International Symposium on ground support in mining and underground construction, pp 622–634

  • Rahman Z, Slob S, Hack R (2006) Deriving roughness characteristics of rock mass discontinuities from terrestrial laser scan data. In: IAEG 2006, Geological Society of London, London, UK, paper 437

  • Spetsakis M, Aloimonos JY (1991) A multi-frame approach to visual motion perception. Int J Comput Vis 6:245–255. https://doi.org/10.1007/BF00115698

    Article  Google Scholar 

  • Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182. https://doi.org/10.1016/j.enggeo.2009.03.004

    Article  Google Scholar 

  • Sturzenegger M, Yan M, Stead D, Elmo D (2007) Application and limitations of ground-based laser scanning in rock slope characterization. In: Eberhardt E, Stead D, Morrison T (eds) Proceedings 1st Canada–U.S. Rock Mechanics Symposium. Vancouver, pp 29–36

  • Tatone BSA, Grasselli G (2009) A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials. Rev Sci Instrum 80:125110. https://doi.org/10.1063/1.3266964

    Article  Google Scholar 

  • Tse R, Cruden DM (1979) Estimating joint roughness coefficients. Int J Rock Mech Min Sci Geomech Abstr 16:303–307. https://doi.org/10.1016/0148-9062(79)90241-9

    Article  Google Scholar 

  • Unal M, Yakar M, Yildiz F (2017) Discontinuity surface roughness measurement techniques and the evaluation of digital photogrametric method. In: Commission III, WG III/2, p 6

  • Valduga A (1948) Osservazioni geologiche sulla parte settentrionale dei Monti del Chianti. Boll Della Soc Geol Ital 67:161–187

    Google Scholar 

  • Valduga A (1952) Cenni sulla stratigrafia e osservazioni sulla tettonica della parte centrale dei Monti del Chianti. Boll Della Soc Geol Ital 71:3–41

    Google Scholar 

  • Vanneschi C, Salvini R, Massa G et al (2014) Geological 3D modeling for excavation activity in an underground marble quarry in the Apuan Alps (Italy). Comput Geosci 69:41–54. https://doi.org/10.1016/j.cageo.2014.04.009

    Article  Google Scholar 

  • Vanneschi C, Eyre M, Francioni M, Coggan J (2017) The use of remote sensing techniques for monitoring and characterization of slope instability. Proc Eng 191:150–157. https://doi.org/10.1016/j.proeng.2017.05.166

    Article  Google Scholar 

  • Westoby MJ, Brasington J, Glasser NF et al (2012) “Structure-from-Motion” photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Salvini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvini, R., Vanneschi, C., Coggan, J.S. et al. Evaluation of the Use of UAV Photogrammetry for Rock Discontinuity Roughness Characterization. Rock Mech Rock Eng 53, 3699–3720 (2020). https://doi.org/10.1007/s00603-020-02130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02130-2

Keywords

Navigation