Skip to main content
Log in

Evaluation of Shear Strength Parameters of Rocks by Preset Angle Shear, Direct Shear and Triaxial Compression Tests

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

A d :

Shearing area within sample in direct shear test

A p :

Shearing area within sample in preset angle shear test

c :

Cohesion

c c :

Cohesion in triaxial compression test

CVεd :

Coefficient of variation for εd

CVεc :

Coefficient of variation for εc

CVεp :

Coefficient of variation for εp

CVσ1 :

Coefficient of variation for σ1

CVτd :

Coefficient of variation for τd

CVτp :

Coefficient of variation for τp

f :

Rolling friction coefficient

f P p :

Horizontal friction

n :

The number of test data

N :

The normal load in preset angle shear test

P 0 :

Normal load in direct shear test

P c :

Peak load under triaxial compression

P d :

Shear load under direct shear

P p :

Vertical force in preset angle shear test

R 2 :

Fitting coefficient

T :

The shear load in preset angle shear test

X i :

The test data

α :

Preset angle

φ :

Internal friction angle

φ c :

Internal friction angle in triaxial compression test

β :

Rupture angle

ε c :

Peak strain under triaxial compression

ε d :

Peak strain under direct shear

ε p :

Peak strain under preset angle shear

σ 1 :

Maximum principal stress

σ 3 :

Confining pressure

σ d :

Normal stress in direct shear test

σ n :

Normal stress in triaxial compression test

σ p :

Normal stress in preset angle shear test

τ c :

Shear strength obtained by triaxial compression test

τ d :

Shear strength obtained by direct shear test

τ p :

Shear strength obtained by preset angle shear test

M–C:

Mohr–Coulomb

PAS:

Preset angle shear

DS:

Direct shear

TC:

Triaxial compression

UCS:

Uniaxial compressive strength

References

  • Alejano LR, Carranzatorres C (2011) An empirical approach for estimating shear strength of decomposed granites in Galicia. Eng Geol 120(1):91–102

    Article  Google Scholar 

  • American Society for Testing and Materials (ASTM) (1996) Standard test method for triaxial compressive strength of undrained rock core samples without pore pressure measurements. D2664-95a

  • Armaghani DJ, Hajihassani M, Bejarbaneh BY, Marto A, Mohamad ET (2014) Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network. Measurement 55:487–498

    Article  Google Scholar 

  • Barla G, Barla M, Martinotti ME (2010) Development of a new direct shear testing apparatus. Rock Mech Rock Eng 43(1):117–122

    Article  Google Scholar 

  • Dang W, Konietzky H, Frühwirt T (2016) Direct shear behavior of a plane joint under dynamic normal load (DNL) conditions. Eng Geol 213:133–141

    Article  Google Scholar 

  • Dieterich JH (1979) Modeling of rock friction: 1. Experimental results and constitutive equations. J Geophys Res 84(B5)(5):2161–2168

    Article  Google Scholar 

  • Gong FQ, Si XF, Li XB, Tao M (2016) Rock dynamic Mohr–Coulomb and Hoek−Brown criteria based on strain rate effect. Chin J Nonferr Metal 26(8):1763–1773

    Google Scholar 

  • Gong FQ, Luo S, Lin G, Si XF (2018) Dynamic empirical Mohr–Coulomb criterion of marble under low loading rate. In: Proceeding of international conference on geo-mechanics, geo-energy and geo-resources, IC3G2018. Chengdu, China, 22–24 September 2018, pp 87–95

  • Gong FQ, Si XF, Li XB, Wang SY (2019) Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar. Int J Rock Mech Min Sci 113:211–219

    Article  Google Scholar 

  • Hajdarwish A, Shakoor A (2006) Predicting the shear strength parameters of mudrocks. Geol Soc Lond 2:607

    Google Scholar 

  • Han YJ (2001) Discussion on the causes of parameter error in direct shear test. Dam Obs Geotech Test 25(2):43–44

    Google Scholar 

  • Jia ZR, Shi J (2011) A method of data processing for determining shear strength parameters of rock. Appl Mech Mater 97–98:397–401

    Article  Google Scholar 

  • Jiang Y, Xiao J, Tanabashi Y, Mizokami T (2004) Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition. Int J Rock Mech Min Sci 41:275–286

    Article  Google Scholar 

  • Kahraman S, Altun H, Tezekici BS, Fener M (2006) Sawability prediction of carbonate rocks from shear strength parameters using artificial neural networks. Int J Rock Mech Min Sci 43(1):157–164

    Article  Google Scholar 

  • Kalantari S, Hashemolhosseini H, Baghbanan A (2018) Estimating rock strength parameters using drilling data. Int J Rock Mech Min Sci 104:45–52

    Article  Google Scholar 

  • Karaman K, Cihangir F, Ercikdi B, Kesimal A, Demirel S (2015) Utilization of the Brazilian test for estimating the uniaxial compressive strength and shear strength parameters. J S Afr Inst Min Metal 115(3):185–192

    Article  Google Scholar 

  • Konietzky H, Fruhwirt T, Luge H (2012) A new large dynamic rock mechanical direct shear box device. Rock Mech Rock Eng 45:427–432

    Article  Google Scholar 

  • Lajtai EZ, Gadi AM (1989) Friction on a granite to granite interface. Rock Mech Rock Eng 22(1):25–49

    Article  Google Scholar 

  • Li HB, Zhao J, Li TJ (1999) Triaxial compression tests on a granite at different strain rates and confining pressures. Int J Rock Mech Min Sci 36(8):1057–1063

    Article  Google Scholar 

  • Ramamurthy T (2001) Shear strength response of some geological materials in triaxial compression. Int J Rock Mech Min Sci 38(5):683–697

    Article  Google Scholar 

  • Renani HR, Martin CD (2018) Cohesion degradation and friction mobilization in brittle failure of rocks. Int J Rock Mech Min Sci 106:1–13

    Article  Google Scholar 

  • Shen J, Jimenez R (2018) Predicting the shear strength parameters of sandstone using genetic programming. B Eng Geol Environ 77:1–16

    Article  Google Scholar 

  • Si XF, Gong FQ, Li XB, Wang SY, Luo S (2019) Dynamic Mohr–Coulomb and Hoek–Brown strength criteria of sandstone at high strain rate. Int J Rock Mech Min Sci 115:48–59

    Article  Google Scholar 

  • Srivastava LP, Singh M (2015) Effect of fully grouted passive bolts on joint shear strength parameters in a blocky mass. Rock Mech Rock Eng 48(3):1197–1206

    Article  Google Scholar 

  • Wang G, Pan YS, Xiao XC, Chen GY, Dai LP (2016) Experimental study on the charge induction regularity in the shearing process of coal. J Safety Environ 16(3):103–108

    Google Scholar 

  • Wu W, Zou Y, Li X, Zhao J (2014) An unload-induced direct-shear model for granular gouge friction in rock discontinuities. Rev Sci Instrum 85(9):093902

    Article  Google Scholar 

  • Wu X, Jiang Y, Li B (2018) Influence of joint roughness on the shear behaviour of fully encapsulated rock bolt. Rock Mech Rock Eng 51(3):953–959

    Article  Google Scholar 

  • Xie HF, Rao QH, Xie Q, Wang Z (2007) Fracture morphology analysis of brittle rock under anti-plane shear (mode III) loading. Chin J Rock Mech Eng 26(9):1832–1839

    Google Scholar 

  • Xie HF, Rao QH, Xie Q, Li ZY, Wang Z (2008) Plane shear (mode II) fracture experiment analysis of brittle rock at high temperature. Chin J Nonferr Metal 18(8):1534–1540

    Google Scholar 

  • Yazdni B (2012) Shear strength parameters of shale based on triaxial compression test. Master Thesis, Universiti Teknologi Malaysia, Malaysia

  • Zhang SH, Liao XX (1997) Error analysis of rock strength in triaxial compression and direct shear tests. J Xiangtan Min Inst 12(4):1–5

    Google Scholar 

  • Zhang H, Nunoo S, Tannant DD, Wang S (2014) Numerical study of the evolution of cohesion and internal friction in rock during the pre-peak deformation process. Arab J Geosci 8(6):3501–3513

    Article  Google Scholar 

  • Zhang HQ, Tannant DD, Jing H, Nunoo S, Niu SJ, Wang S (2015) Evolution of cohesion and friction angle during microfracture accumulation in rock. Nat Hazards 77(1):497–510

    Article  Google Scholar 

  • Zhao J (2000) Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. Int J Rock Mech Min Sci 37(7):1115–1121

    Article  Google Scholar 

  • Zhou YH, Zhou DP, Yang T, Feng ZJ (2005) Experimental investigation on shear strength parameters of jointed rock mass. J Southwest Jiaotong Univ 40(1):73–76

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 41877272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqiang Gong.

Ethics declarations

Conflict of interest

Fengqiang Gong declares that he has no conflict of interest. Song Luo declares that he has no conflict of interest. Ge Lin declares that he has no conflict of interest. Xibing Li declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, F., Luo, S., Lin, G. et al. Evaluation of Shear Strength Parameters of Rocks by Preset Angle Shear, Direct Shear and Triaxial Compression Tests. Rock Mech Rock Eng 53, 2505–2519 (2020). https://doi.org/10.1007/s00603-020-02050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02050-1

Keywords

Navigation