Skip to main content

Advertisement

Log in

Characterization of Fracture Process in Sandstone: A Linear Correspondence Between Acoustic Emission Energy Density and Opening Displacement Gradient

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

H :

Specimen height

L :

Specimen length

B :

Specimen thickness

a :

Notch length

ρ AE :

The AE energy density

E :

The AE energy of an individual event

n :

The total number of AE events

D :

Representative area

u :

Opening displacement

g xx :

Opening displacement gradient

ε xx :

Opening displacement strain

d :

The spacing of subset centers

x :

Horizontal coordinate

y :

Vertical coordinate

References

  • Broberg KB (1999) Cracks and fracture. Academic Press, San Diego

    Google Scholar 

  • Carpinteri A, Lacidogna G, Niccolini G, Puzzi S (2008) Critical defect size distributions in concrete structures detected by the acoustic emission technique. Meccanica 43:349–363

    Article  Google Scholar 

  • Carpinteri A, Lacidogna G, Niccolini G, Puzzi S (2009) Morphological fractal dimension versus power-law exponent in the scaling of damaged media. Int J Damage Mech 18:259–282

    Article  Google Scholar 

  • Carpinteri A, Lacidogna G, Corrado M, Di Battista E (2016) Cracking and crackling in concrete-like materials: a dynamic energy balance. Eng Fract Mech 155:130–144

    Article  Google Scholar 

  • Gudmundsson A (2011) Rock fractures in geological processes. Cambridge University Press, New York

    Book  Google Scholar 

  • He S, Feng Z, Rowlands RE (1997) Fracture process zone analysis of concrete using moiré interferometry. Exp Mech 37(3):367–373

    Article  Google Scholar 

  • Heap MJ, Brantut N, Baud P, Meredith PG (2015) Time-dependent compaction band formation in sandstone. J Geophy Res Solid Earth 120:4808–4830. https://doi.org/10.1002/2015JB012022

    Article  Google Scholar 

  • Ince NF, Kao C-S, Kaveh M, Tewfik A, Labuz JF (2009) Crack growth monitoring with hierarchical clustering of AE. J Acoust Emiss 27:176–185

    Google Scholar 

  • Li BQ, Einstein HH (2017) Comparison of visual and acoustic emission observations in a four point bending experiment on barre granite. Rock Mech Rock Eng 50(9):2277–2296

    Article  Google Scholar 

  • Lin Q, Labuz JF (2013) Fracture of sandstone characterized by digital image correlation. Int J Rock Mech Min Sci 60:235–245

    Article  Google Scholar 

  • Lin Q, Fakhimi A, Haggerty M, Labuz JF (2009) Initiation of tensile and mixed-mode fracture in sandstone. Int J Rock Mech Min Sci 46:489–497

    Article  Google Scholar 

  • Lin Q, Biolzi L, Labuz JF (2012) Opening and mixed-mode fracture initiation in a quasi-brittle material. J Eng Mech-ASCE 2013 139:177–187

    Article  Google Scholar 

  • Lin Q, Yuan H, Biolzi L, Labuz JF (2014) Opening and mixed-mode fracture processes in a quasi-brittle material via digital imaging. Eng Fract Mech 131:176–193

    Article  Google Scholar 

  • Lin Q, Mao D, Wang S, Li S (2018) The influences of mode II loading on fracture process in rock using acoustic emission energy. Eng Fract Mech 194:136–144

    Article  Google Scholar 

  • Lin Q, Wan B, Wang Y, Lu Y, Labuz JF (2019) Unifying acoustic emission and digital imaging observations of quasi-brittle materials. Theor Appl Fract Mech 103:102301

    Article  Google Scholar 

  • Maji AK, Wang JL (1992) Experimental study of fracture processes in rock. Rock Mech Rock Eng 25:25–47

    Article  Google Scholar 

  • Otsuka K, Date H (2000) Fracture process zone in concrete tension specimen. Eng Fract Mech 65:111–131

    Article  Google Scholar 

  • Rinehart AJ, Bishop JE, Dewers T (2015) Fracture propagation in Indiana limestone interpreted via linear softening cohesive fracture model. J Geophys Res 120(4):2292–2308

    Article  Google Scholar 

  • Shah KR, Labuz JF (1995) Damage mechanisms in stressed rock from acoustic emission. J Geophys Res 100(B8):15527–15539

    Article  Google Scholar 

  • Sutton MA, Orteu J, Schreier HW (2009) Image correlation for shape motion and deformation measurements. Springer, New York

    Google Scholar 

  • Tyupkin YS, Giovambattista RD (2005) Correlation length as an indicator of critical point behavior prior to a large earthquake. Earth Planet Sci Lett 230:85–96

    Article  Google Scholar 

  • White DJ, Take WA, Bolton MD (2003) Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 53(7):619–631

    Article  Google Scholar 

  • Zang A, Wagner CF, Dresen G (1996) Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure. J Geophys Res 101(B8):17507–17521

    Article  Google Scholar 

  • Zhang QB, Zhao J (2013) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min Sci 60:423–439

    Article  Google Scholar 

  • Zhang H, Fu D, Song H, Kang Y, Huang G, Qi G, Li J (2015) Damage and fracture investigation of three-point ntched sandstone beams by DIC and AE techniques. Rock Mech Rock Eng 48(3):1297–1303

    Article  Google Scholar 

  • Zietlow WK, Labuz JF (1998) Measurement of the intrinsic process zone in rock using acoustic emission. Int J Rock Mech Min Sci Geomech Abstr 35:291–299

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the advice from Professor Joseph F. Labuz at University of Minnesota, Twin Cities, and indeed, the financial supports from the National Natural Science Foundation of China (Grant Nos. 51304225, 51774305), the Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (No. PRP/open-1402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Wang, S., Wan, B. et al. Characterization of Fracture Process in Sandstone: A Linear Correspondence Between Acoustic Emission Energy Density and Opening Displacement Gradient. Rock Mech Rock Eng 53, 975–981 (2020). https://doi.org/10.1007/s00603-019-01949-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01949-8

Keywords

Navigation