Skip to main content
Log in

Toward a Generic Computational Approach for Flexible Rockfall Barrier Modeling

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Flexible rockfall barriers are protection structures used to mitigate rockfall hazards in mountainous areas. The complex nonlinear mechanical behavior of these structures under impacts requires powerful modeling tools to perform structural analysis. In this article, a generic computational approach to rockfall barriers analysis is introduced. First, the generic formulation and numerical implementation in the GENEROCK software are detailed. Then, two barrier models are considered and validated against experimental full-scale tests on two different technologies. This numerical investigation permits insightful numerical investigation of the barriers’ behavior. Exploratory numerical simulations are eventually performed to highlight the strengths and generality of the proposed approach. The influence of the curtain effect modeling in simulation results is presented. The effects of repeated impacts on rockfall barriers are investigated and present new insight into barrier behavior and management practices. Stochastic modeling methods are also used to study the propagation of uncertainty and variability of the structure itself in its dynamic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(\mathbf {A}\) :

Stochastic input variables

E :

Young’s modulus

\(E_{\mathrm{c}}\) :

Energy level

\(f_{\mathrm{A}}\) :

Probability density function

\(F_{\mathrm{y}}\) :

Activation force of energy dissipating devices

g :

Earth gravitational acceleration

I :

Second moment of area of post

\(K_1, K_2, K_3\) :

Elastic, elastoplastic and blockage stiffness of energy dissipating devices

L :

Length of post

\(L_{\mathrm{ext}}\) :

Side length of boulder

m :

Mass of boulder

\(P_{\mathrm{cr}}\) :

Critical buckling load of post

\(P_{\mathrm{f}}\) :

Deficiency probability

R :

Height ratio

r :

Height ratio threshold

\(\mathbf {x}^*\) :

Design point

\(\varvec{\alpha }\) :

Importance factor

\({\varDelta }E_{\mathrm{p}}\) :

Potential energy variation

\(\delta _{\mathrm{s}}\) :

Stroke of energy dissipating devices

\({\varDelta }z\) :

Altitude variation

\(\mu _{F_{\mathrm{y}}}\) :

Mean of activation forces

\(\sigma _{F_{\mathrm{y}}}\) :

Standard deviation of activation forces

\(\tau\) :

Time step

DEM:

Discrete element method

FORM:

First-order reliability method

References

  • Andrew RD, Fry DA, Bookwalter RE (1998) Field testing and evaluation of various rock fall control system. Chama ValleyProductions, LLC, Chama Valley

    Google Scholar 

  • Arpin BD (2013) Development of standardized testing procedures for flexible rockfall fence systems. Master’s thesis, Colorado School of Mines, Golden

  • Bertrand D, Trad A, Limam A, Silvani C (2012) Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method: from the local scale to the structure scale. Rock Mech Rock Eng 45(5):885–900

    Google Scholar 

  • Bourrier F, Lambert S, Baroth J (2015) A reliability-based approach for the design of rockfall protection fences. Rock Mech Rock Eng 48(1):247–259

    Article  Google Scholar 

  • CAN (2018) Travaux spéciaux: accès difficile, risques naturels, maritime et fluvial. CAN - Le Relut, 26270 Mirmande, France. http://www.can.fr. Accessed 4 June 2019

  • Castanon-Jano L, Blanco-Fernandez E, Castro-Fresno D, Ballester-Muñoz F (2017) Energy dissipating devices in falling rock protection barriers. Rock Mech Rock Eng 50(3):603–619

    Article  Google Scholar 

  • Castanon-Jano L, Blanco-Fernandez E, Castro-Fresno D, Ferreño D (2018) Use of explicit fem models for the structural and parametrical analysis of rockfall protection barriers. Eng Struct 166:212–226. https://doi.org/10.1016/j.engstruct.2018.03.064

    Article  Google Scholar 

  • Cazzani A, Mongiovì L, Frenez T (2002) Dynamic finite element analysis of interceptive devices for falling rocks. Int J Rock Mech Mining Sci 39:303–321

    Article  Google Scholar 

  • Chanut MA, Dubois L, Matot B, Nicot F (2012) Comportement dynamique des écrans de filets sous impact: un modèle générique d’écrans. In: Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, JNGG, Bordeaux, France, 4–6 July

  • Chanut MA, Coulibaly JB, Lambert S, Nicot F (2018) Numerical investigation of rockfall barrier under realistic on-site impacts. In: International symposium rock slope stability 2018. 13–15 November, Chambery, France. https://www.c2rop.fr/wp-content/uploads/2018/12/RSS2018_proceedings.pdf. Accessed 4 June 2019

  • Coulibaly JB (2017) Modélisation numérique discrète du comportement mécanique sous impact des structures d’écrans de filets pare-pierres. PhD thesis, University Grenoble-Alpes, Grenoble, France (in French)

  • Coulibaly JB, Chanut MA, Lambert S, Nicot F (2017a) Non-linear discrete mechanical model of steel rings. J Eng Mech 143(9):04017087

    Article  Google Scholar 

  • Coulibaly JB, Chanut MA, Galandrin C, Olmedo I, Lambert S, Nicot F (2017b) Generic modeling of flexible rockfall barriers: from components characterization to full-scale numerical simulations. In: 6th Interdisciplinary workshop on rockfall protection, RocExs 2017, Barcelona, Spain, 22–24 May. ISBN: 978-84-946909-4-5

  • Coulibaly JB, Chanut MA, Lambert S, Nicot F (2018) Sliding cable modeling: An attempt at a unified formulation. Int J Solids Struct 130–131:1–10

    Article  Google Scholar 

  • de Miranda S, Gentilini C, Gottardi G, Govoni L, Mentani A, Ubertini F (2015) Virtual testing of existing semi-rigid rockfall protection barriers. Eng Struct 85:83–94. https://doi.org/10.1016/j.engstruct.2014.12.022

    Article  Google Scholar 

  • Duffy JD, Haller B (1993) Field tests of flexible rockfall barriers. In: Conference on transportation facilities through difficult terrain, Aspen-Snowmass, CO, USA, 8–10 August. pp 465–473. ISBN: 90-5410-343-4

  • EOTA (2013) ETAG 27—Guideline for European technical approval of falling rock protection kits. European organization for technical approvals. Brussels

  • Erhart T (2012) Pulley mechanism for muscle or tendon movements along bones and around joints. In: LS-DYNA forum, DYNAmore, Ulm, Germany, 9–10 October. https://www.dynamore.se/en/resources/papers/ls-dyna-forum-2012/documents/passive-3-3. Accessed 4 June 2019

  • Escallón J, Wendeler C, Chatzi E, Bartelt P (2014) Parameter identification of rockfall protection barrier components through an inverse formulation. Eng Struct 77:1–16

    Article  Google Scholar 

  • Escallón JP, Wendeler C (2013) Numerical simulations of quasi-static and rockfall impact tests of ultra-high strength steel wire-ring nets using abaqus/explicit. In: 2013 SIMULIA community conference, Vienna, Austria, 23–24 May. https://www.3ds.com/fileadmin/PRODUCTS/SIMULIA/PDF/scc-papers/numerical-simulation-quasi-static-and-rockfall-impact-13.pdf. Accessed 4 June 2019

  • Escallón JP, Boetticher V, Wendeler C, Chatzi E, Bartelt P (2015) Mechanics of chain-link wire nets with loose connections. Eng Struct 101:68–87

    Article  Google Scholar 

  • Gentilini C, Govoni L, de Miranda S, Gottardi G, Ubertini F (2012) Three-dimensional numerical modelling of falling rock protection barriers. Comput Geotech 44:58–72

    Article  Google Scholar 

  • Gentilini C, Gottardi G, Govoni L, Mentani A, Ubertini F (2013) Design of falling rock protection barriers using numerical models. Eng Struct 50:96–106. https://doi.org/10.1016/j.engstruct.2012.07.008

    Article  Google Scholar 

  • Gerber W, Böll A (2006) Type-testing of rockfall barriers—comparative results. In: International symposium interpraevent, Munich, Germany, 3–4 April, pp 189–198. http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2006_1_189.pdf. Accessed 4 June 2019

  • Gerber W, Grassl H, Böll A, Ammann W (2001) Flexible rockfall barriers—development, standardisation and type-testing in switzerland. In: International Conference on Landslides—causes, impacts and countermeasures. Davos, Switzerland, pp 515–524

  • Gottardi G, Govoni L (2010) Full-scale modelling of falling rock protection barriers. Rock Mech Rock Eng 43:261–274

    Article  Google Scholar 

  • Grassl H (2002) Experimentelle und numerische modellierung des dynamischen tragund verformungsverhaltens von hochflexiblen schutzsystemen gegen steinschlag. PhD Thesis, ETH Zurich, Zurich

  • Grassl H, Volkwein A, Anderheggen E, Ammann J (2002) Steel-net rockfall protection—experimental and numerical simulation. WIT Trans Built Environ 63:11

    Google Scholar 

  • Hambleton JP, Buzzi O, Giacomini A, Spadari M, Sloan SW (2013) Perforation of flexible rockfall barriers by normal block impact. Rock Mech Rock Eng 46(3):515–526

    Article  Google Scholar 

  • Heiss C (2004) Characteristics of the testing of rock fall protection kits on transversal test sites on example “Steirischer Erzberg”. In: International Symposium Interpraevent, Riva del Garda, Italy, pp 49–58

  • Hincz K (2009) Nonlinear analysis of cable net structures suspended from arches with block and tackle suspension system, taking into account the friction of the pulleys. Int J Space Struct 24(3):143–152

    Article  Google Scholar 

  • Lambert S, Nicot F (eds) (2011) Rockfall engineering. Wiley, New York

  • Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139167970

  • Luciani A, Todaro C, Peila D (2017) Maintenance and risk management of rockfall protection net fences through numerical study of damage influence. Frattura ed Integrità Strutturale 12(43):241–250. https://doi.org/10.3221/IGF-ESIS.43.19

    Article  Google Scholar 

  • McCauley MT, Works BW, Naramore SA (1985) Rockfall Mitigation. California Department of Transportation, Sacramento

    Google Scholar 

  • Mentani A, Giacomini A, Buzzi O, Govoni L, Gottardi G, Fityus S (2016a) Numerical modelling of a low-energy rockfall barrier: new insight into the bullet effect. Rock Mech Rock Eng 49(4):1247–1262. https://doi.org/10.1007/s00603-015-0803-1

    Article  Google Scholar 

  • Mentani A, Govoni L, Gottardi G, Lambert S, Bourrier F, Toe D (2016b) A new approach to evaluate the effectiveness of rockfall barriers. Procedia Eng 158:398–403. https://doi.org/10.1016/j.proeng.2016.08.462. VI Italian conference of researchers in geotechnical engineering, CNRIG2016—Geotechnical engineering in multidisciplinary research: from microscale to regional scale, Bologna, Italy, 22–23 September 2016

    Article  Google Scholar 

  • Mentani A, Govoni L, Giacomini A, Gottardi G, Buzzi O (2018) An equivalent continuum approach to efficiently model the response of steel wire meshes to rockfall impacts. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-018-1490-5

    Article  Google Scholar 

  • Moon T, Oh J, Mun B (2014) Practical design of rockfall catchfence at urban area from a numerical analysis approach. Eng Geol 172:41–56

    Article  Google Scholar 

  • Muraishi H, Sano S (1999) Full-scale rockfall test of ring net barrier and components. In: Seminar on Rockfall Tests and Standardization, Davos, Switzerland

  • Muraishi H, Samizo M, Sugiyama T (2005) Development of a flexible low-energy rockfall protection fence. Q Rep Railway Tech Res Inst 46(3):161–166

    Google Scholar 

  • Nicot F, Cambou B, Mazzoleni G (2001a) Design of rockfall restraining nets from a discrete element modelling. Rock Mech Rock Eng 34(2):99–118

    Article  Google Scholar 

  • Nicot F, Cambou B, Mazzoleni G (2001b) From a constitutive modelling of metallic rings to the design of rockfall restraining nets. Int J Numer Anal Methods Geomech 25(1):49–70

    Article  Google Scholar 

  • Olmedo I, Robit P, Bertrand D, Galandrin C, Coulibaly JB, Chanut MA (2017) Extended experimental studies on rockfall flexible fences. In: RocExs 2017—6th Interdisciplinary Workshop on Rockfall Protection

  • Peila D, Pelizza S, Sassudelli F (1998) Evaluation of behavior of rockfall restraining nets by full scale tests. Rock Mech Rock Eng 31(1):1–24

    Article  Google Scholar 

  • Smith DD, Duffy JD (1990) Field tests and evaluation of rockfall restraining nets. Tech. rep., California Department of Transportation, Sacramento, California (USA), cA/TL-90/05

  • Spadari M, Giacomini A, Buzzi O, Hambleton JP (2012) Prediction of the bullet effect for rockfall barriers: a scaling approach. Rock Mech Rock Eng 45(2):131–144

    Article  Google Scholar 

  • Toe D, Mentani A, Govoni L, Bourrier F, Gottardi G, Lambert S (2018) Introducing meta-models for a more efficient hazard mitigation strategy with rockfall protection barriers. Rock Mech Rock Eng 51(4):1097–1109. https://doi.org/10.1007/s00603-017-1394-9

    Article  Google Scholar 

  • Tran PV, Maegawa K, Fukada S (2013) Experiments and dynamic finite element analysis of a wire-rope rockfall protective fence. Rock Mech Rock Eng 46(5):1183–1198. https://doi.org/10.1007/s00603-012-0340-0

    Article  Google Scholar 

  • Volkwein A (2004) Numerische simulation von flexiblen steinschlagschutzsystemen. PhD thesis, ETH Zurich, Zurich

  • Volkwein A (2005) Numerical simulation of flexible rockfall protection systems. In: International conference on computing in civil engineering, ASCE, Cancun, Mexico, 12–15 July. https://doi.org/10.1061/40794(179)122

  • Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren LKA, Gerber W, Jaboyedoff M (2011) Rockfall characterisation and structural protection—a review. Nat Hazards Earth Syst Sci 11(9):2617–2651. https://doi.org/10.5194/nhess-11-2617-2011

    Article  Google Scholar 

  • Zhou B, Accorsi ML, Leonard JW (2004) Finite element formulation for modeling sliding cable elements. Comput Struct 82(2–3):271–280

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the French National Project C2ROP (Chutes de Blocs, Risques Rocheux et Ouvrages de Protection, www.c2rop.fr ) for having supported this work and for fostering the development of the GENEROCK software potential applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibril B. Coulibaly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulibaly, J.B., Chanut, MA., Lambert, S. et al. Toward a Generic Computational Approach for Flexible Rockfall Barrier Modeling. Rock Mech Rock Eng 52, 4475–4496 (2019). https://doi.org/10.1007/s00603-019-01878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01878-6

Keywords

Navigation