Skip to main content
Log in

Influence of Temperature on the Structure of Pore–Fracture of Sandstone

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

SEM:

Scanning electron microscope

LPNA:

Low-pressure nitrogen adsorption

NMR:

Nuclear magnetic resonance

T :

Temperature (°C)

BET:

Brunauer–Emmett–Teller

BJH:

Barrett–Joyner–Halenda

FHH:

Frenkel–Halsey–Hill theory

T 2 :

Transverse relaxation time (ms)

T 2B :

Bulk relaxation time (ms)

T 2S :

Surface relaxation time (ms)

T 2D :

Diffusion in internal field gradients (ms)

ρ 2 :

Transverse surface relaxation strength (m/s)

S :

Pore surface area (m2)

V :

Pore volume (cm3)

V 0 :

Volume of monolayer coverage (m3)

A :

Power-law exponent

P 0 :

Saturation pressure of the gas (MPa)

P :

Equilibrium pressure of the adsorbed gas molecules (MPa)

D :

Fractal dimension

S T :

Spectrum area of NMR T2 distribution at Sw condition

S w :

NMR spectrum at water-saturated condition

S ir :

NMR spectrum at irreducible water condition

K He :

Helium permeability (mD)

φ NMR :

NMR total porosity (%)

φ B :

Bound fluid porosity (%)

φ F :

Free fluid porosity (%)

BVI:

Bound volume index (%)

FFI:

Free fluid index (%)

References

  • Akbarzadeh H, Chalaturnyk RJ (2014) Structural changes in coal at elevated temperature pertinent to underground coal gasification: a review. Int J Coal Geol 131:126–146

    Article  Google Scholar 

  • Anovitz LM, Cole DR (2015) Characterization and analysis of porosity and pore structures. Rev Mineral Geochem 80(1):61–164

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Cai Y, Liu D, Pan Z, Yao Y, Li J, Qiu Y (2013) Petrophysical characterization of Chinese coal cores with heat treatment by nuclear magnetic resonance. Fuel 108:292–302

    Article  Google Scholar 

  • Clarkson CR, Wood J, Burgis S, Aquino S, Freeman M (2012) Nanopore-structure analysis and permeability predictions for a tight gas siltstone reservoir by use of low-pressure adsorption and mercury-intrusion techniques. SPE Reserv Eval Eng 15:648-661

    Article  Google Scholar 

  • Clarkson CR et al (2013) Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 103:606–616. https://doi.org/10.1016/j.fuel.2012.06.119

    Article  Google Scholar 

  • Committee CNS (2009) Methods for determining the physical and mechanical properties of coal and rock. Standards Press of China, Beijing

    Google Scholar 

  • Feng G, Kang Y, Meng T, Y-q Hu, X-h Li (2017) The influence of temperature on mode I fracture toughness and fracture characteristics of sandstone. Rock Mech Rock Eng 50:2007–2019. https://doi.org/10.1007/s00603-017-1226-y

    Article  Google Scholar 

  • Feng G, Kang Y, Chen F, Y-w Liu, X-c Wang (2018) The influence of temperatures on mixed-mode (I + II) and mode-II fracture toughness of sandstone. Eng Fract Mech 189:51–63. https://doi.org/10.1016/j.engfracmech.2017.07.007

    Article  Google Scholar 

  • Frosch GP, Tillich JE, Haselmeier R, Holz M, Althaus E (2000) Probing the pore space of geothermal reservoir sandstones by nuclear magnetic resonance. Geothermics 29:671–687

    Article  Google Scholar 

  • Gibb FGF (1999) High-temperature, very deep, geological disposal: a safer alternative for high-level radioactive waste? Waste Manag 19:207–211

    Article  Google Scholar 

  • Hajpál M, Török Á (2004) Mineralogical and colour changes of quartz sandstones by heat. Environ Geol 46:311–322

    Article  Google Scholar 

  • Hinai AA, Rezaee R, Esteban L, Labani M (2014) Comparisons of pore size distribution: a case from the Western Australian gas shale formations. J Unconv Oil Gas Resour 8:1–13. https://doi.org/10.1016/j.juogr.2014.06.002

    Article  Google Scholar 

  • Hodot B (1966) Outburst of coal and coalbed gas (Chinese translation). China Coal Industry Press, Beijing, p 318

    Google Scholar 

  • Lai J, Wang G, Fan Z, Chen J, Wang S, Zhou Z, Fan X (2016) Insight into the pore structure of tight sandstones using NMR and HPMI measurements. Energy Fuels 30:10200–10214

    Article  Google Scholar 

  • Lai J et al (2018) A review on pore structure characterization in tight sandstones. Earth Sci Rev 177:436–457. https://doi.org/10.1016/j.earscirev.2017.12.003

    Article  Google Scholar 

  • Li W, Liu H, Song X (2017) Influence of fluid exposure on surface chemistry and pore–fracture morphology of various rank coals: implications for methane recovery and CO2 storage. Energy Fuels 31:12552–12569

    Article  Google Scholar 

  • Liu X, Yuan S, Sieffert Y, Fityus S, Buzzi O (2016) Changes in mineralogy, microstructure, compressive strength and intrinsic permeability of two sedimentary rocks subjected to high-temperature heating. Rock Mech Rock Eng 49:2985–2998. https://doi.org/10.1007/s00603-016-0950-z

    Article  Google Scholar 

  • Niu S, Zhao Y, Hu Y (2014) Experimental investigation of the temperature and pore pressure effect on permeability of lignite under the in situ condition. Transp Porous Media 101:137–148

    Article  Google Scholar 

  • Ranjith PG, Viete DR, Chen BJ, Perera MSA (2012) Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Eng Geol 151:120–127

    Article  Google Scholar 

  • Rosenbrand E, Fabricius IL, Fisher Q, Grattoni C (2015) Permeability in Rotliegend gas sandstones to gas and brine as predicted from NMR, mercury injection and image analysis. Mar Pet Geol 64:189–202

    Article  Google Scholar 

  • Shao J, Hu Y, Meng T, Song S, Jin P, Feng G (2016) Effect of temperature on permeability and mechanical characteristics of lignite. Adv Mater Sci Eng 2016:1–12. https://doi.org/10.1155/2016/1430641

    Article  Google Scholar 

  • Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619

    Article  Google Scholar 

  • Sirdesai NN, Mahanta B, Ranjith PG, Singh TN (2017a) Effects of thermal treatment on physico-morphological properties of Indian fine-grained sandstone. Bull Eng Geol Environ 78:1–15

    Google Scholar 

  • Sirdesai NN, Singh TN, Pathegama Gamage R (2017b) Thermal alterations in the poro-mechanical characteristic of an Indian sandstone—a comparative study. Eng Geol 226:208–220. https://doi.org/10.1016/j.enggeo.2017.06.010

    Article  Google Scholar 

  • Somerton WH (1992) Thermal properties and temperature-related behavior of rock/fluid systems. Elsevier, Amsterdam

    Google Scholar 

  • Sun Q, Lü C, Cao L, Li W, Geng J, Zhang W (2016) Thermal properties of sandstone after treatment at high temperature. Int J Rock Mech Min Sci 85:60–66. https://doi.org/10.1016/j.ijrmms.2016.03.006

    Article  Google Scholar 

  • Sun H, Sun Q, Deng W, Zhang W, Lü C (2017) Temperature effect on microstructure and P-wave propagation in Linyi sandstone. Appl Therm Eng 115:913–922. https://doi.org/10.1016/j.applthermaleng.2017.01.026

    Article  Google Scholar 

  • Tang P, Chew NYK, H-k Chan, Raper JA (2003) Limitation of determination of surface fractal dimension using N2 adsorption isotherms and modified Frenkel–Halsey–Hill theory. Langmuir 19:2632–2638

    Article  Google Scholar 

  • Thomas S (2007) Enhanced oil recovery—an overview. Oil Gas Sci Technol 63:9–19

    Article  Google Scholar 

  • Tian H, Kempka T, Xu N-X, Ziegler M (2012) Physical properties of sandstones after high temperature treatment. Rock Mech Rock Eng 45:1113–1117. https://doi.org/10.1007/s00603-012-0228-z

    Article  Google Scholar 

  • Tian H, Kempka T, Yu S, Ziegler M (2016) mechanical properties of sandstones exposed to high temperature. Rock Mech Rock Eng 49:321–327. https://doi.org/10.1007/s00603-015-0724-z

    Article  Google Scholar 

  • Xiao D, Guo S, Xu Q, Lu Z, Lu S (2017a) Type and size distribution of nanoscale pores in tight gas sandstones: a case study on lower cretaceous Shahezi Formation in Songliao Basin of NE China. J Nanosci Nanotechnol 17:6337–6346. https://doi.org/10.1166/jnn.2017.14503

    Article  Google Scholar 

  • Xiao D, Lu S, Yang J, Zhang L, Li B (2017b) Classifying multiscale pores and investigating their relationship with porosity and permeability in tight sandstone gas reservoirs. Energy Fuels 31:9188–9200

    Article  Google Scholar 

  • Yang L, Alec MM, Dariusz W, Rod S, Thushan E (2017a) Effect of high temperatures on sandstone—a computed tomography scan study. Int J Phys Model Geotech 17:1–16

    Google Scholar 

  • Yang S-Q, Xu P, Li Y-B, Huang Y-H (2017b) Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments. Geothermics 69:93–109. https://doi.org/10.1016/j.geothermics.2017.04.009

    Article  Google Scholar 

  • Yao Y, Liu D (2012) Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel 95:152–158

    Article  Google Scholar 

  • Yao Y, Liu D, Tang D, Tang S, Huang W (2008) Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals. Int J Coal Geol 73:27–42. https://doi.org/10.1016/j.coal.2007.07.003

    Article  Google Scholar 

  • Yao Y, Liu D, Che Y, Tang D, Tang S, Huang W (2010) Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel 89:1371–1380. https://doi.org/10.1016/j.fuel.2009.11.005

    Article  Google Scholar 

  • Yuan Y, Rezaee R, Verrall M, Hu S-Y, Zou J, Testmanti N (2018) Pore characterization and clay bound water assessment in shale with a combination of NMR and low-pressure nitrogen gas adsorption. Int J Coal Geol 194:11–21. https://doi.org/10.1016/j.coal.2018.05.003

    Article  Google Scholar 

  • Zhang Y, Zhang X, Zhao YS (2005) Process of sandstone thermal cracking. Chin J Geophys 48:722–726

    Article  Google Scholar 

  • Zhang W, Sun Q, Hao S, Geng J, Lv C (2016a) Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng 98:1297–1304. https://doi.org/10.1016/j.applthermaleng.2016.01.010

    Article  Google Scholar 

  • Zhang Z, Shi Y, Li H, Jin W (2016b) Experimental study on the pore structure characteristics of tight sandstone reservoirs in Upper Triassic Ordos Basin China. Energy Explor Exploit 34:418–439

    Article  Google Scholar 

  • Zhang L, Lu S, Xiao D, Li B (2017a) Pore structure characteristics of tight sandstones in the northern Songliao Basin, China. Mar Pet Geol 88:170–180. https://doi.org/10.1016/j.marpetgeo.2017.08.005

    Article  Google Scholar 

  • Zhang P, Lu S, Li J, Zhang J, Xue H, Chen C (2017b) Comparisons of SEM, low-field nmr, and mercury intrusion capillary pressure in characterization of the pore size distribution of lacustrine shale: a case study on the Dongying Depression, Bohai Bay Basin, China. Energy Fuels 31:9232–9239. https://doi.org/10.1021/acs.energyfuels.7b01625

    Article  Google Scholar 

  • Zhang Y, Sun Q, He H, Cao L, Zhang W, Wang B (2017c) Pore characteristics and mechanical properties of sandstone under the influence of temperature. Appl Therm Eng 113:537–543. https://doi.org/10.1016/j.applthermaleng.2016.11.061

    Article  Google Scholar 

  • Zhou L, Kang Z (2016) Fractal characterization of pores in shales using NMR: a case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China. J Nat Gas Sci Eng 35:860–872. https://doi.org/10.1016/j.jngse.2016.09.030

    Article  Google Scholar 

  • Zimmermann G, Reinicke A, Cumming W, Bruhn D (2010) Hydraulic stimulation of a deep sandstone reservoir to develop an Enhanced Geothermal System: laboratory and field experiments. Geothermics 39:70–77

    Article  Google Scholar 

  • Zuo J, Xie H, Zhou H, Peng S (2007) Experimental research on thermal cracking of sandstone under different temperature. Chin J Geophys 50:1150–1155

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 51574173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoqing Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, P., Hu, Y., Shao, J. et al. Influence of Temperature on the Structure of Pore–Fracture of Sandstone. Rock Mech Rock Eng 53, 1–12 (2020). https://doi.org/10.1007/s00603-019-01858-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01858-w

Keywords

Navigation