Skip to main content
Log in

Influence of the Effective Vertical Stresses on Hydraulic Fracture Initiation Pressures in Shale and Engineered Geothermal Systems Explorations

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Agapito J, Hardy M (1982) Induced horizontal stress method of pillar design in oil shale. In: 15th oil shale symposium, Colorado School of Mines, pp. 191–197)

  • ASTM (2004) Standard test method for determination of the in-situ stress in rock using the hydraulic fracturing method. Annual Book of ASTM Standards D4645:1–8. https://doi.org/10.1520/D4645-08

    Article  Google Scholar 

  • Badra, H. (2011). Fracture characterization and analog modeling of the woodford shale in the arbuckle mountains, Oklahoma, USA. In: AAPG international conference and exhibition. Milan, Italy

  • Baisch S, Voros R (2009) AP 3000 report—induced seismicity. www.wsu.bs.ch. Accessed 10 Nov 2017

  • Bendall B, Hogarth R, Holl H, Mcmahon A, Larking A, Reid P (2014) Australian experiences in EGS permeability enhancement—a review of 3 case studies. In: Proceedings of 39th stanford geothermal workshop, pp 1–10

  • Berryman JG (2005) Poroelastic fluid effects on shear for rocks with soft anisotropy. Geophys J Int 161(3):881–890. https://doi.org/10.1111/j.1365-246X.2005.02581.x

    Article  Google Scholar 

  • Breit VS, Stright Jr DH, Dozzo JA (1992) Reservoir characterization of the bakken shale from modeling of horizontal well production interference data. In: SPE rocky mountain regional meeting. Casper, Wyoming: Society of Petroleum Engineers. https://doi.org/10.2118/24320-MS

  • Brown DW (2009) Hot dry rock geothermal energy: important lessons from Fenton Hill. In: Thirty-fourth workshop on geothermal reservoir engineering, 3–6

  • Brown DW, Duchane DV, Heiken G, Hriscu VT, Kron A (2012) Mining the earth’s heat: hot dry rock geothermal energy. Mining the earth’s heat: hot dry rock geothermal energy. Springer, New York. https://doi.org/10.1007/978-3-540-68910-2

    Book  Google Scholar 

  • Brudy M, Zoback MD, Fuchs K, Rummel F, Baumg’artner J (1997) Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes’ Implications for crustal strength. J Geophys Res 102(B8):18453–18475

    Article  Google Scholar 

  • Charles W, Bob B, Mike E, Tom L (2004) Improved horizontal well stimulations in the bakken formation, williston basin, montana. In: Proceedings of SPE annual technical conference and exhibition. https://doi.org/10.2523/90697-MS

  • Charléty J, Cuenot N, Dorbath L, Dorbath C, Haessler H, Frogneux M (2007) Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous-Forêts. Int J Rock Mech Min Sci 44(8):1091–1105. https://doi.org/10.1016/j.ijrmms.2007.06.003

    Article  Google Scholar 

  • Cramer DD (1986) Reservoir characteristics and stimulation techniques in the bakken formation and adjacent beds, billings nose area, Williston Basin. Soc Petrol Eng. https://doi.org/10.2523/15166-MS

    Article  Google Scholar 

  • Detournay E, Cheng AHD (1993) Fundamentals of poroelasticity. In: Fairhurst C (ed) Comprehensive rock engineering: principles, practice and projects. Analysis and design methods, vol 2. Pergamon, Oxford/New York, pp 113–171

    Google Scholar 

  • Dezayes C, Gentier S, Genter A (2005) Deep geothermal energy in Western Europe: the soultz project. BRGM/RP-54227-FR

  • Doherty P, Harrison R, Wallroth T (1994) Sensitivity study of the economics of heat pump basedhot dry rock (HDR) heating in Sweden. Report Fj-13

  • Eliasson T, Sundquist U, Wallroth T (1988) Rock mass characteristics at the HDR geothermal research site in the Bohus granite, SW Sweden

  • Engelder T, Lash GG, Uzcátegui RS (2009) Joint sets that enhance production from middle and upper devonian gas shales of the Appalachian Basin. AAPG Bull 93(7):857–889. https://doi.org/10.1306/03230908032

    Article  Google Scholar 

  • Fehler MC (1989) Stress control of seismicity patterns observed during hydraulic fracturing experiments at the Fenton Hill hot dry rock geothermal energy site, New Mexico. Int J Rock Mech Min Sci Geomech 26(3–4):211–219. https://doi.org/10.1016/0148-9062(89)91971-2

    Article  Google Scholar 

  • Feng Y, Gray KE (2017) Discussion on field injectivity tests during drilling. Rock Mech Rock Eng 50(2):493–498. https://doi.org/10.1007/s00603-016-1066-1

    Article  Google Scholar 

  • Fonseca ER, Farinas MJ (2013) Hydraulic fracturing simulation case study and post frac analysis in the haynesville shale. In: SPE hydraulic fracturing technology conference, (Xl). https://doi.org/10.2118/163847-MS

  • Fontaine J, Johnson N, Schoen D (2008) Design, execution, and evaluation of a “Typical” marcellus shale slickwater stimulation: a case history. Soc Petrol Eng. https://doi.org/10.2118/117772-MS

    Article  Google Scholar 

  • Frash L (2007) Laboratory-scale study of hydraulic fracturing in heterogeneous media for enhanced geothermal systems and general well stimulation (Ph.D Thesis). Civil and Environmental Engineering, Colorado School of Mines

  • Gale JFW, Reed RM, Holder J (2007) Natural fractures in the barnett shale and their importance for hydraulic fracture treatments. AAPG Bull 91(4):603–622. https://doi.org/10.1306/11010606061

    Article  Google Scholar 

  • Gray I (2017) Effective stress in rock. In: Wesseloo J, Wesseloo J (eds), eighth international conference on deep and high stress mining. perth: australian centre for geomechanics PP—Perth. https://papers.acg.uwa.edu.au/p/1704_12_Gray/

  • Grigsby CO, Tester JW (1989) Rock-water interactions in the Fenton Hill, New Mexico, hot dry rock geothermal systems. II. Modeling geochemical behavior. Geothermics 18(5–6):657–676. https://doi.org/10.1016/0375-6505(89)90099-0

    Article  Google Scholar 

  • Haimson B, Fairhurst C (1967) Initiation and extension of hydraulic fractures in rocks. Soc Petrol Eng 7(03):310–318. https://doi.org/10.2118/1710-PA

    Article  Google Scholar 

  • Haimson B, Zhao Z (1991) Effect of borehole size and pressurization rate on hydraulic fracturing breakdown pressure. In: The 32nd U.S. symposium on rock mechanics (USRMS), 10–12 July.  American Rock Mechanics Association, pp 191–200

  • Häring MO, Schanz U, Ladner F, Dyer BC (2008) Characterisation of the Basel 1 enhanced geothermal system. Geothermics 37(5):469–495. https://doi.org/10.1016/j.geothermics.2008.06.002

    Article  Google Scholar 

  • Hill AJ, Gravestock DI (1995) Cooper basin. Geolo South Australia 2:78–87

    Google Scholar 

  • Hirschmann G, Duyster J, Zulauf G, Kontny A, de Wall H, Lapp M, Harms U (2006) The KTB superdeep borehole: petrography and structure of a 9-km-deep crustal section. Geol Rundsch 86(S1):S3–S14. https://doi.org/10.1007/pl00014663

    Article  Google Scholar 

  • Hopkins CW, Holditch SA, Hill DG (1998) Characterization of an induced hydraulic fracture completion in a naturally fractured antrim shale reservoir, 177–185. https://doi.org/10.2118/51068-MS

  • Hubbert M, Willis D (1957) Mechanics of hydraulic fracturing. Soc Petrol Eng 9(6):153–166. https://doi.org/10.1016/S0376-7361(07)53011-6

    Article  Google Scholar 

  • O’Brien J, Duyster P, Grauert J, Schreyer W, Stockhert B, Weber K (1997) Crustal evolution of the KTB drill site: from oldest relies to the late Hercynian granites. J Geophys Res 102(B8):18203–18220

    Article  Google Scholar 

  • Jin Z, Li W, Jin C, Hambleton J, Cusatis G (2017) Elastic, strength, and fracture properties of marcellus shale. Int J Rock Mech Min Sci 109(17):124–137

    Google Scholar 

  • Jost ML, Büßelberg T, Jost Ö, Harjes H-P (1998) Source parameters of injection-induced microearthquakes at 9 km depth at the KTB deep drilling site, Germany. Bull Seismol Soc Am 88(3):815–832

    Google Scholar 

  • Jung R, Orzol J, Jatho R, Kehrer P, Tischner T (2005) The GeneSys-project: extraction of geothermal heat from tight sediments. In: Proceedings, 30th workshop on geothermal reservoir engineering, Stanford University, (April), 24–29

  • Jupe AJ, Green ASP, Wallroth T (1992) Induced microseismicity and reservoir growth at the Fjällbacka hot dry rocks project, Sweden. Int J Rock Mech Min Sci 29(4):343–354. https://doi.org/10.1016/0148-9062(92)90511-W

    Article  Google Scholar 

  • Kaieda H, Sasaki S, Wyborn D (2010) Comparison of characteristics of micro-earthquakes observed during hydraulic stimulation operations in Ogachi, Hijiori and Cooper Basin HDR projects. World Geothermal Congress 2010(April):1–6

    Google Scholar 

  • Kitano K, Hori Y, Kaieda H (2000) Outline of the ogachi hdr project and character of the reservoirs. In: Proceedings of the world geothermal congress, Kyushu – Tohoku, Japan, pp 3773–3778

  • Konstantinos P (2005) Petrographic characterization of the Barnett Shale, Fort Worth Basin, Texas (MS.c Thesis). University of Texas at Austin, Austin, Texas

  • Kuhlman RD, Perez JI, Claiborne EB (1992) Microfracture stress tests, anelastic strain recovery, and differential strain analysis assist in bakken shale horizontal drilling program. SPE Rocky Mt Reg Meet. https://doi.org/10.2118/24379-MS

    Article  Google Scholar 

  • Laughlin AW, Eddy AC, Laney R, Aldrich MJ (1983) Geology of the Fenton Hill, New Mexico, hot dry rock site. J Volcanol Geotherm Res 15:21–41. https://doi.org/10.1016/0377-0273(83)90094-X

    Article  Google Scholar 

  • Matthew L, Ave B, Hall B, Timothy R (2009) Lithostratigraphy and petrophysics of the devonian marcellus interval in West Virginia and Southwestern Pennsylvania. In: 9th annual GCSSEPM foundation Bob F. perkins research conference. Houston, TX

  • Mayerhofer MJ, Stegent NA, Barth JO, Ryan KM (2011) Integrating fracture diagnostics and engineering data in the marcellus shale. In: SPE annual technical conference and exhibition, 30 October-2 November, Denver, Colorado, USA, 1–15. https://doi.org/10.2118/145463-MS

  • McClure, M. W. (2012). Modeling and characterization of hydraulic stimulation and induced seismicity in geothermal and shale gas reservoirs (Ph.D Thesis). Stanford University

  • McClure MW, Horne RN (2014) An investigation of stimulation mechanisms in enhanced geothermal systems. Int J Rock Mech Min Sci 72:242–260. https://doi.org/10.1016/j.ijrmms.2014.07.011

    Article  Google Scholar 

  • Montgomery SL, Jarvie DM, Bowker KA, Pollastro RM (2005) Mississippian Barnett Shale, Fort Worth basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential. Am Asso Petrol Geol Bull 89(2):155–175. https://doi.org/10.1306/09170404042

    Article  Google Scholar 

  • Nunn J (2012) Burial and thermal history of the haynesville shale: implications for overpressure, gas generation, and natural hydrofracture. Gulf Coast Assoc Geol Soc 1(May):81–96

    Google Scholar 

  • Phillips Z, Halverson R, Strauss S, Layman J, Green T (2007) A case study in the bakken formation: changes to hydraulic fracture stimulation treatments result in improved oil production and reduced treatment costs. In: Rocky mountain oil & gas technology symposium. Society of Petroleum Engineers. https://doi.org/10.2523/108045-MS

  • Richards JA, Walter LM, Budai JM, Abriola LM (1994) Large and small scale structural controls on fluid migration in the Antrim Shale, Northern Michigan basin. Advances in Antrim Shale Technology, Workshop, sponsored by Gas Research Institute in Cooperation with the Michigan Section Society of Petroleum Engineers, Mt. Pleasant, Michigan

  • Ryder RT (1990) Fracture patterns and their origin in the upper devonian antrim shale gas reservoir of the michigan basin: a review

  • Scott PP Jr, Bearden W, Howard GC (1953) Rock rupture as affected by fluid properties. J Petrol Technol 5:111–124. https://doi.org/10.2118/205-G

    Article  Google Scholar 

  • Shen B (2008) Borehole breakouts and in situ stresses. In: Potvin R, Carter Y, Dyskin J, Jeffrey A (ed) Proceedings of the first southern hemisphere international rock mechanics symposium, Australian Centre for Geomechanics, Perth, pp 407–418

  • Shin K, Ito H, Oikawa Y (2000) Stress stae at the Ogachi site. In: Proceedings world geothermal congress. Kyushu—Tohoku, Japan

  • Siebrits E, Elbel JL, Hoover RS, Diyashev IR, Griffin LG, Demetrius SL, Hill DG (2000) Refracture reorientation enhances gas production in barnett shale tight gas wells. Soc Petrol Eng. https://doi.org/10.2118/63030-MS

    Article  Google Scholar 

  • Tester JW (2006) The future of geothermal energy. Massachusetts Institute of Technology. http://www.eere.energy.gov/geothermal/pdfs/structure_outcome.pdf. Accessed 10 Oct 2017

  • Tischner T, Krug S, Hesshaus A, Jatho R, Bischoff M, Wonik T (2013) Massive fracturing in low permeable sedimentary rock in the GeneSys project. In: Proceedings of the thirty-eighth workshop on geothermal reservoir engineering geothermal reservoir engineering. Stanford University, Stanford, Califonia, USA

  • U.S. Energy Information Administration. (2011). Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays. https://www.eia.gov/analysis/studies/usshalegas/pdf/usshaleplays.pdf. Accessed 12 Oct 2017

  • Valley B, Evans KF (2007) Stress state at Soultz-Sous-Forets to 5 km depth from wellbore failure and hydraulic observations. In: Proceedings, thirty-second workshop on geothermal reservoir engineering stanford university, Stanford, California, SGP-TR-183

  • Vidal J, Genter A, Duringer P, Schmittbuhl J, Strasbourg U, De, Descartes R, Cedex F-S (2015) Natural permeability in fractured triassic sediments of the upper rhine graben from deep geothermal boreholes. In: World geothermal congress 2015 Melbourne, Australia, 19–25 April 2015, (April), 1–13

  • Wagner GA, Coyle DA, Duyster J, Peterek A, Schroder B, Wemmer K, Welzel B (1997) Post-variscan thermal and tectonic evolution of the KTB site and its surroundings. J Geophys Res 102(B8):18221–18232

    Article  Google Scholar 

  • Wallroth T (1990) Rock stress measurements at the HDR research site at Fjallbacka, Sweden. In: Baria R (ed) Camborne school of mines international hot dry rock conference. Robertson Scientific Publications, London, pp 98–107

  • Wallroth T, Eliasson T, Sundquist U (1999) Hot dry rock research experiments at Fjällbacka, Sweden. Geothermics 28(August):617–625. https://doi.org/10.1016/S0375-6505(99)00032-2

    Article  Google Scholar 

  • Wang C, Zeng Z (2011) Overview of Geomechanical Properties of Bakken Formation. In:Williston Basin, North Dakota. 45th U.S. Rock mechanics/geomechanics symposium. San Francisco, California: American Rock Mechanics Association

  • Wyborn D, De Graaf L, Davidson S, Hann S (2005) Development of Australia’ s first hot fractured rock (HFR) underground heat exchanger, Cooper Basin, South Australia. Workshop Geothermal Congress 2005(April):24–29

    Google Scholar 

  • Xin T (2014) Experimental and numerical study on evolution of biots coefficient during failure process for brittle rocks. Rock Mech Rock Eng 48:1289–1296

    Google Scholar 

  • French S, Rodgerson J, Feik C (2014) Re-fracturing horizontal shale wells: case history of a woodford shale pilot project. Soc Petrol Eng. https://doi.org/10.2118/168607-MS

    Article  Google Scholar 

  • Yeager BB, Meyer BR (2010) Injection/fall-off testing in the marcellus shale: using reservoir knowledge to improve operational efficiency. SPE Eastern Regional Meeting, 13-15 October 2010, Morgantown, West Virginia, USA, (1975), 1–19. https://doi.org/10.2118/139067-MS

  • You M (2015) Strength criterion for rocks under compressive-tensile stresses and its application. J Rock Mech Geotech Eng 7(4):434–439. https://doi.org/10.1016/j.jrmge.2015.05.002

    Article  Google Scholar 

  • Zagorski WA, Wrightsone GR, Bowman DC (2012) The appalachian basin marcellus gas play: its history of development, geologic controls on production, and future potential as a world-class reservoir. Am Assoc Petrol Geologists Bull 97:98–107

    Google Scholar 

  • Ziegler M, Valley B, Evans KF (2015) Characterisation of natural fractures an fracture zones of the basel EGS reservoir inferred from geophysical logging of the basel-1 well. In: World Geothermal Congress, April 19–25, Melbourne, Australia, (April), 19–25

  • Zoback MD, Moos D, Mastin L, Anderson RN (1985) Well Bore Breakouts and in-Situ Stress. J Geophys Res 90(B7):5523–5530. https://doi.org/10.1029/JB091iB14p14163

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the support from NSF, through award number 1,738,081, under which the present study was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayani Gunarathna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunarathna, G., da Silva, B.G. Influence of the Effective Vertical Stresses on Hydraulic Fracture Initiation Pressures in Shale and Engineered Geothermal Systems Explorations. Rock Mech Rock Eng 52, 4835–4853 (2019). https://doi.org/10.1007/s00603-019-01841-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01841-5

Keywords

Navigation