Modelling Hydraulic Fracturing with a Point-Based Approximation for the Maximum Principal Stress Criterion

Abstract

Accurate simulation of the propagation of hydraulic fractures under in situ stress conditions in three dimensions (3D) is critical for the enhanced design and optimization of hydraulic fracturing in various engineering applications, such as shale gas/oil production and geothermal utilization. To model fracture propagation for geotechnical applications numerically, a maximum principal stress criterion (MPS-criterion) with a weighted average approximation is conventionally applied. However, it is found that the weighted average approximation is inappropriate for hydraulic fracturing under in situ stress conditions, where the presence of both hydraulic pressure and in situ stress can lead to sharp changes of the stress field in the vicinity of the fracture tips. When both hydraulic pressure and in situ stress are considered, the simulated results with the weighted average approximation are inaccurate and are sensitive to the radius of the computational area. In this paper, we present numerical tests to identify this limitation of the weighted average approximation and propose a novel point-based approximation for the MPS-criterion. The performance of the MPS-criterion with the point-based approximation for hydraulic fracturing under in situ stress conditions is confirmed by a numerical test. It can be seen that, compared to the traditional weighted average approximation, the MPS-criterion with the point-based approximation is more stable and accurate for modelling hydraulic fracturing under in situ stress conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Abbreviations

σ x, σ y and σ z :

In situ stress in x, y, and z direction

p w :

Boundary fluid pressure

σ tip,1 :

Maximum principal stress at the fracture tip

T 0 :

Strength of the material

σ tip :

Stress tensor at the fracture tip

σ i :

Stress tensor at the integration point i

η i :

Weight function associated with integration point i for the calculation of stress tensor at fracture tip

σ i,1 :

Maximum principal stress at the integration point i

ng:

Total number of integration points in a computational area

d i :

Distance from the integration point i to the fracture tip

ε :

A positive but small number

σ and ε :

Cauchy stress tensor and strain tensor

Ω :

Tetrahedral element with four vertex nodes

P 1, P 2, P 3, P 4 :

Vertex nodes of a tetrahedral element

ω 1(x), ω 2(x), ω 3(x), ω 4(x):

Weight functions at a computational point x of GFEM

u h(x):

Global approximation in domain Ω

u i(x):

Local approximation associated with node i

\(\chi _{\Omega }^{{{\text{vis}}}}\) :

Visibility zone

φ i (x):

Sub-weight functions

φ i(x):

Shape functions of GFEM associated with node i

vol (P1, P 2, P 3, P 4):

Volume of a tetrahedral element

S :

Fracture surface

S + and S :

The actual upper side and lower side of fracture surface

u +(x) and u (x):

Point displacements on the upper and lower sides of the fracture surface

δ(x):

Apertures of point x on fracture surface

δ 0 :

Initial aperture of fracture

\(\bar {p}_{n}^{{i+1}}\) and \(\bar {p}_{n}^{i}\) :

Nodes of fracture tips at steps i + 1 and i

\(\overrightarrow {{\Delta _n}}\) :

Fracture propagation vector

Δijk :

Fracture element with nodes i, j and k

p i, p j and p k :

Fluid pressures at nodes i, j and k

O :

Centroid point of a fracture element

Ω ij :

Fluid path between node i and node j

J ij :

Fluid pressure gradient between node i and node j

z i and z j :

Vertical coordinates of node i and node j

l ij :

Distance between node i and node j

µ :

Fluid dynamic viscosity coefficient

δ ij :

Equivalent aperture of the flow path between node i and node j

b ij :

Equivalent width of the fluid path between node i and node j

q ij :

Flow rate from node i to node j

s :

Node saturation

s n and s n−1 :

Node saturation at the current time step and previous time step

f s :

A function of saturation

p n and p n−1 :

Fluid pressure at the current time step and previous time step

K w :

Bulk modulus of fluid

q :

Total flow rate

t :

Time increment

V n and V n−1 :

Volumes of the node at the current time step and previous time step

K :

Global stiffness matrix of GFEM

a :

Nodal displacement vector of GFEM

F :

Load vector of GFEM

F solid, F fluid :

Vectors of the forces for solid mechanics and forces for fluid mechanics

N :

Shape functions for calculating fluid pressure

E :

Young’s modulus of the rock mass

v :

Poisson’s ratio of the rock mass

a :

Radius of the fracture

r :

Distance to the fracture central point

λ:

Ratio of the in situ stresses and hydraulic pressure

p 1, p 2, p 3, p 4 :

Monitoring points

References

  1. Adachi J, Siebrits E, Peirce A, Desroches J (2007) Computer simulation of hydraulic fractures. Int J Rock Mech Min 44(5):739–757

    Article  Google Scholar 

  2. Almaguer J, Manrique J, Wickramasuriya S, Lopez-de-cardenas J, May D, Mcnally AC, Sulbaran A (2002) Oriented perforating minimizes flow restrictions and friction pressures during fracturing. Oilfield Rev 14(1):16–31

    Google Scholar 

  3. Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Meth Eng 40(4):727–758

    Article  Google Scholar 

  4. Bao X, Eaton DW (2016) Fault activation by hydraulic fracturing in western canada. Science 354(6318):1406

    Article  Google Scholar 

  5. Barati R, Liang JT (2014) A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. J Appl Polym Sci 131(16):318–323

    Article  Google Scholar 

  6. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, New York

    Google Scholar 

  7. Bažant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, London

    Google Scholar 

  8. Belytschko T, Lu YY, Gu L (1994) Element-free galerkin methods. Int J Numer Meth Eng 37(2):229–256

    Article  Google Scholar 

  9. Belytschko T, Krongauz Y, Organ D, Fleming M (1996) Meshless methods: an overview and recent developments. Comput Method Appl M 139(1–4):3–47

    Article  Google Scholar 

  10. Bouchard PO, Bay F, Chastel Y, Tovena I (2000) Crack propagation modeling using an advanced remeshing technique. Comput Method Appl M 189(3):723–742

    Article  Google Scholar 

  11. Chen H, Carter KE (2016) Water usage for natural gas production through hydraulic fracturing in the United States from 2008 to 2014. J Environ Manage 170:152–159

    Article  Google Scholar 

  12. Chen M, Jiang H, Zhang GQ, Jin Y (2010) The experimental investigation of fracture propagation behavior and fracture geometry in hydraulic fracturing through oriented perforations. Petrol Sci Technol 28(13):1297–1306

    Article  Google Scholar 

  13. Coulomb CA (1773) Essai sur une application des regles de maximis et minimis a quelques problemes de statique relatifs a l’architecture (essay on maximums and minimums of rules to some static problems relating to architecture), vol 7. Mémoires de mathématique et physique presenté à l'Acádemie des sciences par savantes étrangères, pp 343–382

  14. Duarte CA, Babuška I, Oden JT (2000) Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct 77(2):215–232

    Article  Google Scholar 

  15. Duarte CA, Hamzeh ON, Liszka TJ, Tworzydlo WW (2001) A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Method Appl M 190(15–17):2227–2262

    Article  Google Scholar 

  16. Duarte CA, Reno LG, Simone A (2007) A high-order generalized FEM for through-the-thickness branched cracks. Int J Numer Meth Eng 72(3):325–351

    Article  Google Scholar 

  17. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–525

    Article  Google Scholar 

  18. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond B Biol Sci 221(2):163–198

    Article  Google Scholar 

  19. Hussain MA, Pu SL (1974) Underwood J. Strain energy release rate for a crack under combined mode I and mode II. Fract Anal ASTM STP 560:2–27

    Google Scholar 

  20. Itasca (2005) UDEC version 4.0 user’s manuals. Itasca Consulting Group Inc, Minnesota

    Google Scholar 

  21. Jiao YY, Zhang HQ, Zhang XL, Li HB, Jiang QH (2015) A two-dimensional coupled hydro-mechanical discontinuum model for simulating rock hydraulic fracturing. Int J Numer Anal Met 39:457–481

    Article  Google Scholar 

  22. Kim DJ, Pereira JP, Duarte CA (2010) Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized fem meshes. Int J Numer Meth Eng 81(3):335–365

    Google Scholar 

  23. Lancaster P, Salkauskas K (1986) Curve and surface fitting. an introduction. Lond Acad Press 31(1):155–157

    Google Scholar 

  24. Lin HI, Lee CH (2009) An approach to assessing the hydraulic conductivity disturbance in fractured rocks around the Syueshan tunnel, Taiwan. Tunn Undergr Sp Tech 24(2):222–230

    Article  Google Scholar 

  25. Lisjak A, Kaifosh P, He L, Tatone BSA, Mahabadi OK, Grasselli G (2017) A 2D, fully-coupled, hydro-mechanical, fdem formulation for modelling fracturing processes in discontinuous, porous rock masses. Comput Geotech 81:1–18

    Article  Google Scholar 

  26. Liu QS, Sun L, Tang XH, Chen L (2018) Simulate intersecting 3D hydraulic cracks using a hybrid “FE-Meshfree” method. Eng Anal Bound Elem 91:24–43

    Article  Google Scholar 

  27. Melenk JM, Babuška I (1995) The partition of unity finite element method: basic theory and applications. Comput Method Appl M 139(1–4):289–314

    Google Scholar 

  28. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–150

    Article  Google Scholar 

  29. Mohr O (1900) Welche Umsta¨nde bedingen die Elastizita¨tsgrenze und den Bruch eines Materials? Zeit des Ver Deut Ing 44:1524–1530

    Google Scholar 

  30. Ning YJ, An XM, Ma GW (2011) Footwall slope stability analysis with the numerical manifold method. Int J Rock Mech Min 48(6):964–975

    Article  Google Scholar 

  31. Paluszny A, Zimmerman RW (2011) Numerical simulation of multiple 3D fracture propagation using arbitrary meshes. Comput Method Appl M 200(9):953–966

    Article  Google Scholar 

  32. Paluszny A, Tang XH, Nejati M, Zimmerman RW (2016) A direct fragmentation method with Weibull function distribution of sizes based on finite and discrete element simulations. Int J Solids Struct 80:38–51

    Article  Google Scholar 

  33. Pan PZ, Rutqvist J, Feng XT, Yan F (2014) Tough–RDCA modeling of multiple fracture interactions in caprock during CO2, injection into a deep brine aquifer. Comput Geosci 65(4):24–36

    Article  Google Scholar 

  34. Pereira JP, Duarte CA, Jiao X, Guoy D (2009) Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems. Comput Mech 44(1):73–92

    Article  Google Scholar 

  35. Pereira JP, Duarte CA, Jiao X (2010a) Three-dimensional crack growth with hp-generalized finite element and face offsetting methods. Comput Mech 46:431–453

    Article  Google Scholar 

  36. Pereira JP, Duarte CA, Guoy D, Jiao X (2010b) Hp-generalized fem and crack surface representation for non-planar 3-d cracks. Int J Numer Meth Eng 77(5):601–633

    Article  Google Scholar 

  37. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61(13):2316–2343

    Article  Google Scholar 

  38. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35(2):379–386

    Article  Google Scholar 

  39. Salimzadeh S, Paluszny A, Zimmerman RW (2016) Thermal effects during hydraulic fracturing in low-permeability brittle rocks. U.S. Rock Mechanics Geomechanics Symposium, Houston

    Google Scholar 

  40. Sanborn SE, Prévost JH (2011) Frictional slip plane growth by localization detection and the extended finite element method (XFEM). Int J Numer Anal Met 35(11):1278–1298

    Article  Google Scholar 

  41. Schöllmann M, Richard H, Kullmer G, Fulland M (2002) A new criterion for the prediction of crack development in multiaxially loaded structures. Int J Fract 117:129–141

    Article  Google Scholar 

  42. Sih GC (1973) Some basic problems in fracture mechanics and new concepts. Eng Fract Mech 5:312–365

    Google Scholar 

  43. Sih GC (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10(3):305–321

    Article  Google Scholar 

  44. Sneddon IN (1950) The distribution of stress in the neighborhood of a crack in an elastic solid. Math Proc Cambridge 187(1):229–260

    Google Scholar 

  45. Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Method Appl M 181(1):43–69

    Article  Google Scholar 

  46. Tang XH, Zheng C, Wu SC, Zhang JH (2009) A novel four-node quadrilateral element with continuous nodal stress. Appl Math Mech-Engl 30(12):1519–1532

    Article  Google Scholar 

  47. Terada K, Ishii T, Kyoya T, Kishino Y (2007) Finite cover method for progressive failure with cohesive zone fracture in heterogeneous solids and structures. Comput Mech 39(2):191–210

    Article  Google Scholar 

  48. Thomas M, Partridge T, Harthorn BH, Pidgeon N (2017) Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK. Nat Energy 2(5):17054

    Article  Google Scholar 

  49. Vengosh A, Jackson RB, Warner N, Darrah TH, Kondash A (2014) A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ Sci Technol 48(15):8334–8348

    Article  Google Scholar 

  50. Wang HY (2015) Numerical modeling of non-planar hydraulic fracture propagation in permeable medium using XFEM with cohesive zone method. J Petrol Sci Eng 135:6519

    Google Scholar 

  51. Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024

    Article  Google Scholar 

  52. Wu K, Olson JE (2013) Simultaneous multi-frac treatments: fully coupled fluid flow and fracture mechanics for horizontal wells. Spe J 20(2):337–346

    Article  Google Scholar 

  53. Yang Y, Tang X, Zheng H (2014) A three-node triangular element with continuous nodal stress. Comput Struct 141:46–58

    Article  Google Scholar 

  54. Yang Y, Tang X, Zheng H (2015) Construct ‘FE-Meshfree’ Quad4 using mean value coordinates. Eng Anal Bound Elem 59:78–88

    Article  Google Scholar 

  55. Yang Y, Tang X, Zheng H, Liu Q, He L (2016) Three-dimensional fracture propagation with numerical manifold method. Eng Anal Bound Elem 72:65–77

    Article  Google Scholar 

  56. Yang Y, Chen L, Tang X, Zheng H, Liu QS (2017) A partition-of-unity based ‘FE-meshfree’ hexahedral element with continuous nodal stress. Comput Struct 178:17–28

    Article  Google Scholar 

  57. Yang Y, Tang X, Zheng H, Liu Q, Liu Z (2018) Hydraulic fracturing modeling using the enriched numerical manifold method. Appl Math Model 53:462–486

    Article  Google Scholar 

  58. Zienkiewicz OC, Taylor RL (2008) The finite element method. Osborne McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFC1501300) and the National Natural Science Foundation of China (Grant No. 41602296).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xuhai Tang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Sun, L., Tang, X. et al. Modelling Hydraulic Fracturing with a Point-Based Approximation for the Maximum Principal Stress Criterion. Rock Mech Rock Eng 52, 1781–1801 (2019). https://doi.org/10.1007/s00603-018-1648-1

Download citation

Keywords

  • Hydraulic fracturing
  • Point-based approximation
  • Maximum principal stress criterion (MPS-criterion)
  • Generalized finite element method (GFEM)
  • Hydro-mechanical coupling