Skip to main content
Log in

Wave Propagation in Heterogeneous Media with Cavities by an LSM/LBM-Coupled Model

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Lattice methods, namely the lattice Boltzmann method and the lattice spring model, can be successfully used to address acoustic wave propagation in dry and saturated porous media. The resulting code can upscale porous media properties or study direct time simulations in complex media. Only the second application is detailed here for various flat media which contain or not a cavity, which possess uniform properties or not; an explosion is simulated and the accelerations are measured at the surface. The data show that when the medium is simple, the cavity can be easily located, which is not true when it is heterogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adler PM, Jacquin CG, Quiblier JA (1990) Flow in simulated porous media. Int J Multiph Flow 16:691–712

    Article  Google Scholar 

  • Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94:511

    Article  Google Scholar 

  • Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. low-frequency range. J Acoust Soc Am 28:168

    Article  Google Scholar 

  • Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. Higer frequency range. J Acoust Soc Am 28:179

    Article  Google Scholar 

  • Boutin C, Auriault JL (1990) Dynamic behaviour of porous media saturated by viscoelastic fluid. Application to bituminous concretes. Int J Eng Sci 28:1157

    Article  Google Scholar 

  • Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a lattice-Boltzmann fluid with boundaries. Phys Fluids 13:3452

    Article  Google Scholar 

  • Buxton GA, Balazs AC (2004) Modeling the dynamic fracture of polymer blends processed under shear. Phys Rev B 69:054101

    Article  Google Scholar 

  • Buxton GA, Verberg R, Jasnow D, Balazs AC (2005) Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models. Phys Rev E 71:056707

    Article  Google Scholar 

  • d’Humières D, Ginzburg I, Krafczyk M, Lallemand P, Li-Shi L (2002) Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil Trans R Soc Lond A360:437

    Article  Google Scholar 

  • Faccioli E, Maggio F, Paolucci R, Quarteroni A (1997) 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. J Seismol 1:237–251

    Article  Google Scholar 

  • Ginzbourg I, Adler PM (1994) Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J Phys II Fr 4:191

    Google Scholar 

  • Ginzburg I, d’Humières D (2003) Multireflection boundary conditions for lattice Boltzmann models. Phys Rev E 68:066614

    Article  Google Scholar 

  • Gochioco LM (1990) Seismic surveys for coal exploration and mine planning. Lead Edge 9:25–28

    Article  Google Scholar 

  • Grandjean G, Leparoux D (2004) The potential of seismic methods for detecting cavities and buried objects: experimentation at a test site. J Appl Geophys 56:93

    Article  Google Scholar 

  • Ladd AJC, Kinney JH (1997) Elastic constants of cellular structures. Physica A 240:349

    Article  Google Scholar 

  • Ladd AJC, Verberg R (2001) Lattice-Boltzmann simulations of particle-fluid suspensions. J Stat Phys 104:1191. https://doi.org/10.1023/A:1010414013942

    Article  Google Scholar 

  • Ladd AJC, Kinney JH, Breunig TM (1997) Deformation and failure in cellular materials. Phys Rev E 55:3271

    Article  Google Scholar 

  • Luo L-S (2000) Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases. Phys Rev E 62:4982. https://doi.org/10.1103/PhysRevE.62.4982

    Article  Google Scholar 

  • Malinouskaya I (2007) Propagation des ondes acoustiques dans les milieux hétérogènes. Ph. D. Thesis

  • McNamara GR, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61:2332

    Article  Google Scholar 

  • Nguyen N-Q, Ladd AJC (2002) Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E 66:046708

    Article  Google Scholar 

  • O’Brien GS, Bean CJ (2004) A discrete numerical method for modeling volcanic earthquake source mechanisms. J Geophys Res 109:B09301

    Google Scholar 

  • Ostoja-Starzewski M (2002) Lattice models in micromechanics. Appl Mech Rev 55:35

    Article  Google Scholar 

  • Pazdniakou A, Adler PM (2012) Lattice spring models. Transp Porous Media 93: 243

    Article  Google Scholar 

  • Pazdniakou A, Adler PM (2013) Dynamic permeability of porous media by the lattice Boltzmann method. Adv Water Resour 62:292

    Article  Google Scholar 

  • Piwakowski B, Waletet JM, Moreaux D (1997) High resolution seismic prospection of old gypsum mines—evaluation of detection possibilities. Eur J Environ Eng Geophys 2:109–120

    Google Scholar 

  • Sanchez-Palencia E (1980) Non homogeneous media and vibration theory. Springer, Berlin

    Google Scholar 

  • Shtivelman V (2001) Shallow water seismic surveys for site investigation in the Haifa port extension area. Israel J Appl Geophys 46:147–162

    Google Scholar 

  • Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51:889–901

    Article  Google Scholar 

  • Wang J (1989) The bond-bending model in three dimensions. J Phys A Math Gen 22:L291

    Article  Google Scholar 

  • Wu J, Aidun CK (2010) Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int J Numer Methods Fluids 62:765–783

    Google Scholar 

Download references

Acknowledgements

This work was performed when P.M.A. was supported at the Mechanical Engineering Department, Technion, Haifa, Israel, by a fellowship of the Lady Davis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Adler.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adler, P.M., Pazdniakou, A. Wave Propagation in Heterogeneous Media with Cavities by an LSM/LBM-Coupled Model. Rock Mech Rock Eng 51, 3907–3923 (2018). https://doi.org/10.1007/s00603-018-1602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1602-2

Keywords

Navigation