Skip to main content
Log in

Computationally Enabled 4D Visualizations Facilitate the Detection of Rock Fracture Patterns from Acoustic Emissions

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Monitoring and predicting crack propagation in rock using acoustic emission (AE) technology is integral to a variety of sub-disciplines in the geosciences. The utility of existing AE data, however, is severely limited by prevailing visualization techniques, which suffer from problems of occlusion. Here, we introduce a novel approach to visualize 3D data through time (4D data) using unfiltered individual (AE) event data collected from a granite boulder for a period over 3 years. We implement a 3D extension of Ripley’s K function to evaluate the magnitude of clustering, and use the scale at which clustering is strongest to parameterize three-dimensional kernel density estimation (3DKDE) of AE events. We develop a parallel approach that features a load balancing technique to decrease the computational effort for 3DKDE and hence, reduce execution time. The results from the 3DKDE allow for comprehensible visualization of high AE density areas—best reflecting the actual location of subcritical cracking—and their changes through time, which is a substantial improvement over most existing methods. Our framework is scalable and portable to a variety of other disciplines such as epidemiology, ecology, and any point data by extension. Assumptions and limitations are identified as well as possible future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldred J, Eppes MC, Aquino K, Deal R, Garbini J, Swami S, Tuttle A, Xanthos G (2015) The influence of solar-induced thermal stresses on the mechanical weathering of rocks in humid mid-latitudes. Earth Surface Process Landf 41(5): 603–614

    Article  Google Scholar 

  • Anton-Sanchez L, Bielza C, Merchán-Pérez A, Rodríguez J-R, DeFelipe J, Larrañaga P (2014) Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis. Front Neuroanatomy 8:85

    Article  Google Scholar 

  • Bach B, Dragicevic P, Archambault D, Hurter C, Carpendale S (2016) A Descriptive Framework for Temporal Data Visualizations Based on Generalized Space-Time Cubes. In: Paper read at Computer Graphics Forum

  • Baddeley AJ, Møller J, Waagepetersen R (2000) Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat Neerl 54(3):329–350

    Article  Google Scholar 

  • Bader M (2012) Space-filling curves: an introduction with applications in scientific computing: Springer, Berlin, Heidelberg

    Google Scholar 

  • Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Addison Wesley Longman, Essex, UK

    Google Scholar 

  • Bolibok L (2008) Limitations of Ripley K function use in the analysis of spatial patterns of tree stands with heterogeneous structure. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 7(1):5–18

    Google Scholar 

  • Delmelle E (2009) Point pattern analysis. Int Encycl Human Geogr 8: 204–211

    Article  Google Scholar 

  • Delmelle E, Dony C, Casas I, Jia M, Tang W (2014) Visualizing the impact of space-time uncertainties on dengue fever patterns. Int J Geogr Inf Sci 28(5):1107–1127

    Article  Google Scholar 

  • Dixon PM (2002) Ripley’s K function. Encyclopedia of environmetrics

  • Duca S, Occhiena C, Mattone M, Sambuelli L, Scavia C (2014) Feasibility of ice segregation location by acoustic emission detection: a laboratory test in gneiss. Permafrost Periglac Process 25(3):208–219

    Article  Google Scholar 

  • Ech-Choudany Y, Assarar M, Scida D, Morain-Nicolier F, Bellach B (2017) Unsupervised clustering for building a learning database of acoustic emission signals to identify damage mechanisms in unidirectional laminates. Appl Acoust 123:123–132

    Article  Google Scholar 

  • Eppes M-C, Keanini R (2017) Mechanical weathering and rock erosion by climate-dependent subcritical cracking. Rev Geophys 55(2):470–508

    Article  Google Scholar 

  • Eppes MC, McFadden LD, Wegmann KW, Scuderi LA (2010) Cracks in desert pavement rocks: Further insights into mechanical weathering by directional insolation. Geomorphology 123(1):97–108

    Article  Google Scholar 

  • Eppes MC, Magi B, Hallet B, Delmelle E, Mackenzie-Helnwein P, Warren K, Swami S (2016) Deciphering the role of solar-induced thermal stresses in rock weathering. Geol Soc Am Bull 128(9–10):1315–1338

    Article  Google Scholar 

  • Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37

    Google Scholar 

  • Forkert ND, Fiehler J, Illies T, Möller DP, Handels H, Säring D (2012) 4D blood flow visualization fusing 3D and 4D MRA image sequences. J Magn Reson Imaging 36(2):443–453

    Article  Google Scholar 

  • Girard L, Gruber S, Weber S, Beutel J (2013) Environmental controls of frost cracking revealed through in situ acoustic emission measurements in steep bedrock. Geophys Res Lett 40(9):1748–1753

    Article  Google Scholar 

  • Godin N, Huguet S, Gaertner R, Salmon L (2004) Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers. Ndt E Int 37(4):253–264

    Article  Google Scholar 

  • Goebel T, Becker T, Schorlemmer D, Stanchits S, Sammis C, Rybacki E, Dresen G (2012) Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. J Geophys Res Solid Earth 117(B3):1–18

    Article  Google Scholar 

  • Grosse CU, Ohtsu M. 2008. Acoustic emission testing: Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Grubesic TH, Wei R, Murray AT (2014) Spatial clustering overview and comparison: accuracy, sensitivity, and computational expense. Ann Assoc Am Geogr 104(6):1134–1156

    Article  Google Scholar 

  • Handels H, Werner R, Schmidt R, Frenzel T, Lu W, Low D, Ehrhardt J (2007) 4D medical image computing and visualization of lung tumor mobility in spatio-temporal CT image data. Int J Med Inform 76:S433-S439

    Article  Google Scholar 

  • Hauer M (2013) A 3D spatio-temporal geovisualization of subcounty estimates of historic housing density in Metro Atlanta, 1940–2009. Spat Demogr 1(2):146–161

    Article  Google Scholar 

  • Heap M, Baud P, Meredith P, Bell A, Main I (2009) Time-dependent brittle creep in Darley Dale sandstone. J Geophys Res Solid Earth 114:(B7)

    Article  Google Scholar 

  • Heap M, Farquharson J, Baud P, Lavallée Y, Reuschlé T (2015) Fracture and compaction of andesite in a volcanic edifice. Bull Volcanol 77(6):1–19

    Article  Google Scholar 

  • Hesser J, Kaiser D, Schmitz H, Spies T (2015) Measurements of acoustic emission and deformation in a repository of nuclear waste in salt rock. In: Lollino G et al (eds) Engineering geology for society and territory-volume 6. Springer, pp 551–554

  • Hohl A, Delmelle E, Tang W (2015) Spatiotemporal domain decomposition for massive parallel computationa of space-time kernel density. ISPRS Ann Photogramm Remote Sens Spat Inform Sci 2: 7–11

    Article  Google Scholar 

  • Hohl A, Delmelle E, Tang W, Casas I (2016a) Accelerating the discovery of space-time patterns of infectious diseases using parallel computing. Spatial Spatio Temp Epidemiol 19:10–20

    Article  Google Scholar 

  • Hohl A, Casas I, Delmelle E, Tang W. 2016b. Hybrid Indexing for parallel analysis of spatiotemporal point patterns. In: International Conference on GIScience Short Paper Proceedings (Vol. 1, No. 1)

  • Hohl A, Zheng M, Tang W, Delmelle E, Casas II (2017) Spatiotemporal point pattern analysis using Ripley’s K function. In: Karimi HA, Karimi B (eds) Geospatial data science: techniques and applications. CRC Press, Boca Raton, FL

    Google Scholar 

  • Hütteroth W-D, El Jundi B, Jundi SE, Schachtner J (2010) 3D-reconstructions and virtual 4D-visualization to study metamorphic brain development in the sphinx moth Manduca sexta: Bibliothek der Universität Konstanz

  • Iverson N, Kao CS, Labuz JF (2007) Clustering analysis of AE in rock. J Acoust Emission 25:364–372

    Google Scholar 

  • Lei X, Kusunose K, Rao M, Nishizawa O, Satoh T (2000) Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J Geophys Res Solid Earth (1978–2012) 105(B3):6127–6139

    Article  Google Scholar 

  • Levoy M (1988) Display of surfaces from volume data. IEEE Comput Graph Appl 8(3):29–37

    Article  Google Scholar 

  • Li Y, Liu J, Zhao X, Yang Y (2010) Experimental studies of the change of spatial correlation length of acoustic emission events during rock fracture process. Int J Rock Mech Min Sci 47(8):1254–1262

    Article  Google Scholar 

  • Li J, Jiang Y, Yang C, Huang Q, Rice M (2013) Visualizing 3D/4D environmental data using many-core graphics processing units (GPUs) and multi-core central processing units (CPUs). Comput Geosci 59:78–89

    Article  Google Scholar 

  • Lockner D (1993) The role of acoustic emission in the study of rock fracture. In: Paper read at International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts

  • Moriya H, Manthei G, Mochizuki S, Asanuma H, Hitsuma H, Jones R, Eisenblätter J (2002) Collapsing method for delineation of structures inside AE cloud associated with compression test of salt rock specimen. In: Paper read at 16th International Acoustic Emission Symposium

  • Nguyen HT (2015) The approach of space-time cube to visualizing movement data. Int J Model Optim 5(3):207

    Article  Google Scholar 

  • Olsson W, Holcomb D (2000) Compaction localization in porous rock. Geophys Res Lett 27(21):3537–3540

    Article  Google Scholar 

  • Pfister GF (2001) An introduction to the infiniband architecture. High Perform Mass Storage Parallel I/O 42:617–632

    Google Scholar 

  • Ramasso E, Placet V, Boubakar ML (2015) Unsupervised consensus clustering of acoustic emission time-series for robust damage sequence estimation in composites. IEEE Trans Instrum Meas 64(12):3297–3307

    Article  Google Scholar 

  • Resch B, Wohlfahrt R, Wosniok C (2014) Web-based 4D visualization of marine geo-data using WebGL. Cartogr Geogr Inform Sci 41(3):235–247

    Article  Google Scholar 

  • Rodríguez P, Arab PB, Celestino TB (2016) Characterization of rock cracking patterns in diametral compression tests by acoustic emission and petrographic analysis. Int J Rock Mech Min Sci 83:73–85

    Article  Google Scholar 

  • Stephansson O, Stanchits S, Backers T, Dresen G, Shen B. (2005) Fracturing, acoustic emission and numerical simulation of granite under mode II loading. In: Paper read at ICF11, Italy 2005

  • Tang W, Feng W, Jia M (2015) Massively parallel spatial point pattern analysis: Ripley’s K function accelerated using graphics processing units. Int J Geogr Inf Sci 29(3):412–439

    Article  Google Scholar 

  • Warren K, Eppes M-C, Swami S, Garbini J, Putkonen J (2013) Automated field detection of rock fracturing, microclimate, and diurnal rock temperature and strain fields. Geosci Instr Methods Data Syst 2(2):275–288

    Article  Google Scholar 

  • Wilkinson B, Allen M (2004) Parallel programming: techniques and applications using networked workstations and parallel computers, 2 edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Yamada I, Rogerson PA (2003) An empirical comparison of edge effect correction methods applied to K-function analysis. Geograph Anal 35(2):97–109

    Google Scholar 

  • Yanagidani T, Ehara S, Nishizawa O, Kusunose K, Terada M (1985) Localization of dilatancy in Ohshima granite under constant uniaxial stress. J Geophys Res Solid Earth 90(B8):6840–6858

    Article  Google Scholar 

  • Zang A, Christian F, Wagner, Dresen G (1996) Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure. J Geophys Res Solid Earth 101(B8):17507–17521

    Article  Google Scholar 

  • Zang A, Christian Wagner F, Stanchits S, Dresen G, Andresen R, Haidekker MA (1998) Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads. Geophys J Int 135(3):1113–1130

    Article  Google Scholar 

  • Zhao X, Cai M, Wang J, Ma L (2013) Damage stress and acoustic emission characteristics of the Beishan granite. Int J Rock Mech Min Sci 64:258–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Delmelle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohl, A., D. Griffith, A., Eppes, M.C. et al. Computationally Enabled 4D Visualizations Facilitate the Detection of Rock Fracture Patterns from Acoustic Emissions. Rock Mech Rock Eng 51, 2733–2746 (2018). https://doi.org/10.1007/s00603-018-1488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1488-z

Keywords

Navigation