Skip to main content
Log in

A Validation Study for the Estimation of Uniaxial Compressive Strength Based on Index Tests

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aggistalis G, Alivizatos A, Stamoulis D, Stournaras G (1996) Correlating uniaxial compressive strength with Schmidt hammer rebound number, point load index, Young’s modulus, and mineralogy of gabbros and basalts (Northern Greece). Bull Int Assoc Eng Geol 54(1):3–11

    Article  Google Scholar 

  • Allaby M (ed) (2008) A dictionary of earth sciences. Oxford University Press, Oxford

    Google Scholar 

  • ASTM (1995) Standard test method for unconfined compressive strength of intact rock core specimens. ASTM International, West Conshohocken

    Google Scholar 

  • Aydin A (2009) ISRM suggested method for determination of the Schmidt hammer rebound hardness: revised version. Int J Rock Mech Min Sci 46(3):627–634

    Article  Google Scholar 

  • Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Eng Geol 81(1):1–14

    Article  Google Scholar 

  • Azeez O, Ogundare O, Oshodin TE, Olasupo OA, Olunlade BA (2011) Evaluation of the compressive strength of hybrid clay bricks. J Miner Mater Charact Eng 10(7):609–615

    Google Scholar 

  • Basu A, Aydin A (2006) Predicting uniaxial compressive strength by point load test: significance of cone penetration. Rock Mech Rock Eng 39(5):483–490

    Article  Google Scholar 

  • Basu A, Kamran M (2010) Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength. Int J Rock Mech Min Sci 47(5):823–828

    Article  Google Scholar 

  • Bieniawski ΖΤ (1975) The point-load test in geotechnical practice. Eng Geol 9:1–11

    Article  Google Scholar 

  • Broch E (1983) Estimation of strength anisotropy using the point-load test. Int J Rock Mech Min Sci 20:181–187

    Article  Google Scholar 

  • Broch E, Franklin JA (1972) The point-load strength test. Int J Rock Mech Min Sci 9:669–697

    Article  Google Scholar 

  • Brook N (1980) Size correction for point load testing. Int J Rock Mech Min Sci 17(4):231–235

    Article  Google Scholar 

  • Bruno G, Vessia G, Bobbo L (2013) Statistical method for assessing the uniaxial compressive strength of carbonate rock by Schmidt hammer tests performed on core samples. Rock Mech Rock Eng 46(1):199–206

    Article  Google Scholar 

  • Cargill JS, Shakoor A (1990) Evaluation of empirical methods for measuring the uniaxial strength of rock. Int J Rock Mech Min Sci Geomech Abstr 27(6):495–503

    Article  Google Scholar 

  • D’Andrea DV, Fisher RL, Fogelson DE (1964) Prediction of compression strength from other rock properties. Colo Sch Min Q 59(4b):623–640

    Google Scholar 

  • Deere DU, Miller RP (1966) Engineering classification and index properties for intact rock. Technical Report on Air Force Weapons Lab 65-116, New Mexico, No. AFWL-TR

  • Fener M, Kahraman S, Bilgil A, Gunaydin O (2005) A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eng 38(4):329–343

    Article  Google Scholar 

  • Frost J (2014) Regression analysis: how to interpret S, the standard error of the regression. The Minitab Blog. http://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-how-to-interpret-s-the-standard-error-of-the-regression. Accessed 6 Jan 2017

  • Greminger M (1982) Experimental studies of the influence of rock anisotropy on size and shape effects in point-load testing. Int J Rock Mech Min Sci 19(5):241–246

    Article  Google Scholar 

  • Hawkins AB (1998) Aspects of rock strength. Bull Eng Geol Environ 57:17–30

    Article  Google Scholar 

  • Heidari M, Khanlari GR, Kaveh Mehdi Torabi, Kargarian S (2012) Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing. Rock Mech Rock Eng 45:265–273

    Article  Google Scholar 

  • Hoek E (1977) Rock mechanics laboratory testing in the context of a consulting engineering organization. Int J Rock Mech Min Sci 14:93–101

    Article  Google Scholar 

  • Hu J, Shang J, Lei T (2012) Rock mass quality evaluation of underground engineering based on RS-TOPSIS method. J Cent South Univ Technol 43(11):4412–4419

    Google Scholar 

  • ISRM (1985) Suggested method for determining point load strength. Int J Rock Mech Min Sci Geomech Abstr 22(2):51–60

    Article  Google Scholar 

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. ISRM Turkish National Group, Ankara

    Google Scholar 

  • ISRM (2015) The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Springer, Cham

    Google Scholar 

  • Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38(7):981–994

    Article  Google Scholar 

  • Karaman S (2006) Assesment of clay bricks compressive strength using quantitative values of colour components. Constr Build Mater 20(5):348–354

    Article  Google Scholar 

  • Karaman K, Kesimal A (2015) A comparative study of Schmidt hammer test methods for estimating the uniaxial compressive strength of rocks. Bull Eng Geol Environ 74(2):507–520

    Article  Google Scholar 

  • Karaman K, Kesimal A, Ersoy H (2015) A comparative assessment of indirect methods for estimating the uniaxial compressive and tensile strength of rocks. Arab J Geosci 8:2393–2403

    Article  Google Scholar 

  • Katz O, Rechesa Z, Roegiersc JC (2000) Evaluation of mechanical rock properties using a Schmidt Hammer. Int J Rock Mech Min Sci 37(4):723–728

    Article  Google Scholar 

  • Kidybinski A (1980) Bursting liability indices of coal. Int J Rock Mech Min Sci Geomech Abstr 17:167–171

    Article  Google Scholar 

  • Kılıç A, Teymen A (2008) Determination of mechanical properties of rocks using simple methods. Bull Eng Geol Environ 67:237–244

    Article  Google Scholar 

  • Kοhnο Μ, Maeda H (2012) Relationship between point load strength index and uniaxial compressive strength of hydrothermally altered soft rocks. Int J Rock Mech Min Sci 50(2):147–157

    Google Scholar 

  • Li D, Wong LNY (2013) Point load test on meta-sedimentary rocks and correlation to UCS and BTS. Rock Mech Rock Eng 46(4):889–896

    Article  Google Scholar 

  • Minitab manual (2014) What is a P-value. Minitab Web. http://support.minitab.com/en-us/minitab/17/topic-library/basic-statistics-and-graphs/introductory-concepts/p-value-and-significance-level/what-is-pvalue/. Accessed 29 May 2015

  • Palchik V, Hatzor YH (2004) The influence of porosity on tensile and compressive strength of porous chalks. Rock Mech Rock Eng 37(4):331–341

    Article  Google Scholar 

  • Saptono S, Kramadibratab S, Sulistiantob B (2013) Using the Schmidt hammer on rock mass characteristic in sedimentary rock at Tutupan Coal Mine. Procedia Earth Planet Sci 6:390–395

    Article  Google Scholar 

  • Shalabi FI, Cording EJ, Al-Hattamleh OH (2007) Estimation of rock engineering properties using hardness tests. Eng Geol 90(3–4):138–147

    Article  Google Scholar 

  • Sheorey PR, Barat D, Das MN, Mukherjee KP, Sigh B (1984) Schmidt hammer rebound data for estimation of large scale in situ coal strength. Int J Rock Mech Min Sci Geomech Abstr 21:39–42

    Article  Google Scholar 

  • Singh DP (1981) Determination of some engineering properties of weak rocks. In: Proceedings of the international symposium on weak rock, Tokyo, pp 21–24

  • Singh TN, Kainthola A, Venkatesh A (2012) Correlation between point load index and uniaxial compressive strength for different rock types. Rock Mech Rock Eng 45(2):259–264

    Article  Google Scholar 

  • Smith HJ (1997) The point load test for weak rock in dredging applications. Int J Rock Mech Min Sci 34:295.e1–295.e13

    Google Scholar 

  • Tsiambaos G, Sabatakakis N (2004) Considerations on strength of intact sedimentary rocks. Eng Geol 72(3–4):261–273

    Article  Google Scholar 

  • Tuğrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51(4):303–317

    Article  Google Scholar 

  • Ulusay R, Türeli K, Ider MH (1994) Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng Geol 38:135–157

    Article  Google Scholar 

  • Wang H, Lin H, Cao P (2016) Correlation of UCS rating with Schmidt hammer surfacehardness for rock mass classification. Rock Mech Rock Eng 50:195–203

    Article  Google Scholar 

  • Yagiz S (2009) Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull Eng Geol Environ 68(1):55–63

    Article  Google Scholar 

  • Yaşar E, Erdoğan Y (2004) Estimation of rock physicomechanical properties using hardness methods. Eng Geol 71:281–288

    Article  Google Scholar 

  • Yilmaz I, Sendir H (2002) Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Eng Geol 66(3–4):211–219

    Article  Google Scholar 

  • Yilmaz I, Yuksek G (2009) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. Int J Rock Mech Min Sci 46:803–810

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge Dr. Jared West of the University of Leeds for the valuable suggestions. Mr. Kirk Handley is thanked for help with the test setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Shang, J. A Validation Study for the Estimation of Uniaxial Compressive Strength Based on Index Tests. Rock Mech Rock Eng 51, 2289–2297 (2018). https://doi.org/10.1007/s00603-018-1462-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1462-9

Keywords

Navigation