Lattice Finite Strain Theory for Non-hydrostatically Compressed Materials

  • A. Karrech
  • M. Attar
  • A. Seibi
  • M. Elchalakani
  • F. Abbassi
  • H. Basarir
Original Paper


The purpose of this paper is to describe the nonlinear behaviour of geomaterials within the principles of thermodynamics. The main components of this contribution are (1) a new method to estimate the properties of minerals subjected to the non-hydrostatic compression in diamond anvil cell using the finite strain theory is introduced and (2) a proper measure of deformation that applies to a wide range of minerals is identified. This research work shows that the logarithmic (Hencky) strain produces a good agreement with experiments for a wide range of materials.


Thermodynamics Diamond anvil cell Lattice finite strain theory Logarithmic strain 



The authors are grateful for fundings by the Australian Research Council through Grant DP170104205 and The Omani Research Council through the Grant ORG/DU/EI/14/02.


  1. Anand L (1979) On H. Hencky’s approximate strain-energy function for moderate deformations. J Appl Mech 46(1):78–82CrossRefGoogle Scholar
  2. Cowin S (1997) Remarks on coaxiality of strain and stress in anisotropic elasticity. J Elast 47(1):83–84. CrossRefGoogle Scholar
  3. Dong H, Dorfman SM, Wang J, He D, Duffy TS (2014) The strength of ruby from X-ray diffraction under non-hydrostatic compression to 68 GPa. Phys Chem Miner 41(7):527–535CrossRefGoogle Scholar
  4. Dubrovinsky L, Dubrovinskaia N (2004) Angle-dispersive diffraction under non-hydrostatic stress in diamond anvil cells. J Alloys Compd 375(1–2):86–92. CrossRefGoogle Scholar
  5. Farahani K, Naghdabadi R (2000) Conjugate stresses of the Seth–Hill strain tensors. Int J Solids Struct 37(38):5247–5255. CrossRefGoogle Scholar
  6. Funamori N, Funamori M, Jeanloz R, Hamaya N (1997) Broadening of X-ray powder diffraction lines under nonhydrostatic stress. J Appl Phys 82(1):142–146CrossRefGoogle Scholar
  7. Guignot N, Andrault D (2004) Equations of state of Na–K–Al host phases and implications for MORB density in the lower mantle. Phys Earth Planet Inter 143–144:107–128. CrossRefGoogle Scholar
  8. Hill R (1978) Aspects of invariance in solid mechanics. Adv Appl Mech 18:1–75Google Scholar
  9. Hoger A (1987) The stress conjugate to logarithmic strain. Int J Solids Struct 23(12):1645–1656. CrossRefGoogle Scholar
  10. Karrech A (2013) Non-equilibrium thermodynamics for fully coupled thermal hydraulic mechanical chemical processes. J Mech Phys Solids 61(3):819–837CrossRefGoogle Scholar
  11. Karrech A, Regenauer-Lieb K, Poulet T (2011) Frame indifferent elastoplasticity of frictional materials at finite strain. Int J Solids Struct 48(3–4):397–407. CrossRefGoogle Scholar
  12. Karrech A, Poulet T, Regenauer-Lieb K (2012) Poromechanics of saturated media based on the logarithmic finite strain. Mech Mater 51:118–136CrossRefGoogle Scholar
  13. Karrech A, Schrank C, Regenauer-Lieb K (2015) A parallel computing tool for large-scale simulation of massive fluid injection in thermo-poro-mechanical systems. Philos Mag 95(28–30):3078–3102. CrossRefGoogle Scholar
  14. Karrech A, Abbassi F, Basarir H, Attar M (2017) Self-consistent fractal damage of natural geo-materials in finite strain. Mech Mater 104:107–120. CrossRefGoogle Scholar
  15. Knittle E, Jeanloz R (1987) Synthesis and equation of state of (Mg, Fe) SiO3 perovskite to over 100 Gigapascals. Science 235(4789):668–670CrossRefGoogle Scholar
  16. Mao H, Bell P, Shaner JT, Steinberg D (1978) Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J Appl Phys 49(6):3276–3283CrossRefGoogle Scholar
  17. Meng Y, Weidner DJ, Fei Y (1993) Deviatoric stress in a quasi-hydrostatic diamond anvil cell: effect on the volume-based pressure calibration. Geophys Res Lett 20(12):1147–1150CrossRefGoogle Scholar
  18. Merkel S, Wenk HR, Shu J, Shen G, Gillet P, Mao HK, Hemley RJ (2002) Deformation of polycrystalline MgO at pressures of the lower mantle. J Geophys Res Solid Earth 107(B11):2271CrossRefGoogle Scholar
  19. Merkel S, Wenk HR, Badro J, Montagnac G, Gillet P, Mao HK, Hemley RJ (2003) Deformation of (Mg0.9, Fe0.1)SiO3 perovskite aggregates up to 32 Gpa. Earth Planet Sci Lett 209(3):351–360. CrossRefGoogle Scholar
  20. Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90(224):104. Google Scholar
  21. Ogden R (1984) Non-linear elastic deformations. Ellis Horwood, ChichesterGoogle Scholar
  22. Perez-Albuerne EA, Drickamer HG (1965) Effect of high pressures on the compressibilities of seven crystals having the NaCl or CsCl structure. J Chem Phys 43(4):1381–1387. CrossRefGoogle Scholar
  23. Perić D, Owen D, Honnor M (1992) A model for finite strain elasto-plasticity based on logarithmic strains: computational issues. Comput Methods Appl Mech Eng 94(1):35–61. CrossRefGoogle Scholar
  24. Reuss A (1929) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-J Appl Math Mech/Z Angew Math Mech 9(1):49–58CrossRefGoogle Scholar
  25. Ruoff AL (1975) Stress anisotropy in opposed anvil high-pressure cells. J Appl Phys 46(3):1389–1392CrossRefGoogle Scholar
  26. Ruoff AL, Xia H, Luo H, Vohra YK (1990) Miniaturization techniques for obtaining static pressures comparable to the pressure at the center of the earth: X-ray diffraction at 416 Gpa. Rev Sci Instrum 61(12):3830–3833CrossRefGoogle Scholar
  27. Schlenker JL, Gibbs GV, Boisen MB Jr (1978) Strain-tensor components expressed in terms of lattice parameters. Acta Crystallogr Sect A 34(1):52–54. CrossRefGoogle Scholar
  28. Shieh SR, Duffy TS, Shen G (2004) Elasticity and strength of calcium silicate perovskite at lower mantle pressures. Phys Earth Planet Inter 143–144:93–105. CrossRefGoogle Scholar
  29. Shiro A, Nishida M, Jing T (2008) Residual stress estimation of Ti casting alloy by X-ray single crystal measurement method. AIP Conf Proc 989(1):96–100CrossRefGoogle Scholar
  30. Singh AN (1993) The lattice strains in a specimen (cubic system) compressed non hydrostatically in an opposed anvil device. J Appl Phys 73(9):4278–4286CrossRefGoogle Scholar
  31. Singh AK, Balasingh C (1994) The lattice strains in a specimen (hexagonal system) compressed nonhydrostatically in an opposed anvil high pressure setup. J Appl Phys 75(10):4956–4962CrossRefGoogle Scholar
  32. Singh A, Balasingh C (1996) The effect of uniaxial stress component on the lattice strains measured by a diffraction method using opposed anvil device: trigonal system. Bull Mater Sci 19(3):601–605CrossRefGoogle Scholar
  33. Speziale S, Shieh SR, Duffy TS (2006) High-pressure elasticity of calcium oxide: a comparison between Brillouin spectroscopy and radial X-ray diffraction. J Geophys Res Solid Earth. Google Scholar
  34. Uchida T, Funamori N, Yagi T (1996) Lattice strains in crystals under uniaxial stress field. J Appl Phys 80(2):739–746. CrossRefGoogle Scholar
  35. Vaboya S, Kennedy G (1970) Compressibility of 18 metals to 45 kbar. J Phys Chem Solids 31(10):2329–2345. CrossRefGoogle Scholar
  36. Voigt W (1928) Lehrbuch der Kristallphysik. Teubner, LeipzigGoogle Scholar
  37. Xiao H, Bruhns OT, Meyers A (2006) Elastoplasticity beyond small deformations. Acta Mech 182:31–111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Civil, Environmental and Mining EngineeringUniversity of Western AustraliaCrawleyAustralia
  2. 2.Petroleum Engineering DepartmentUniversity of LouisianaLafayetteUSA
  3. 3.College of Engineering, Dhofar UniversitySalalahOman

Personalised recommendations