Skip to main content
Log in

Electrical Resistivity Evolution and Brittle Failure of Sandstone After Exposure to Different Temperatures

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ρ w :

Electrical resistivity of the pore water (Ω m)

ρρ):

Electrical resistivity of the rock (increment) (Ω m)

ϕϕ):

Porosity of the rock (increment)

SS):

Water saturation of the rock (increment)

mm):

Rock cementation index (increment)

nn):

A constant related to the water content of the rock (increment)

VV):

Rock total volume (increment) (m3)

V wV w):

Volume of water (increment) (m3)

V p :

Rock pore volume (m3)

ε :

Axial strain

σ :

Axial stress (MPa)

σ c :

Yield stress (MPa)

σ d :

Peak stress (MPa)

References

  • Bieniawski ZT (1967) Mechanism of brittle fracture of rock, Parts I, II and III. Int J Rock Mech Min Sci Geomech Abstr 4(4):395–430

    Article  Google Scholar 

  • Brace WF (1975) Dilatancy-related electrical resistivity changes in rocks. Pure appl Geophys 113(86):207–217

    Article  Google Scholar 

  • Brace WF (1981) The effect size on mechanics properties of rocks. Geophys Res Lett 8(7):651–662

    Article  Google Scholar 

  • Brace WF, Orange AS (1968a) Further studies of effects of pressure on electrical resistivity of rocks. J Geophys Res 73(16):5407–5420

    Article  Google Scholar 

  • Brace WF, Orange AS (1968b) Electrical resistivity changes in saturated rocks during fracture and frictional sliding. J Geophys Res 73(4):1433–1445

    Article  Google Scholar 

  • Brace WF, Paulding B, Scholz C (1966) Dilatancy in the fracture of crystalline crocks. J Geophys Res 71(16):3939–3953

    Article  Google Scholar 

  • Brantut N, Heap MH, Meredith PG, Baud P (2013) Time-dependent cracking and brittle creep in crustal: a review. J Struct Geol 52(5):17–43

    Article  Google Scholar 

  • Busby J, Jackson P (2006) The application of time-lapse azimuthal apparent resistivity measurements for the prediction of coastal cliff failure. J Appl Geophys 59(4):261–272

    Article  Google Scholar 

  • Chen G, Lin Y (2004) Stress–strain–electrical resistance effects and associated state equations for uniaxial rock compression. Int J Rock Mech Min 41(2):223–236

    Article  Google Scholar 

  • Chen ML, Jing HW, Ma XJ, Su HJ, Du MR, Zhu TT (2017) Fracture evolution characteristics of sandstone containing double fissures and a single circular hole under uniaxial compression. Int J Min Sci Technol 27(3):499–505

    Article  Google Scholar 

  • Emirov SN, Ramazanova EN (2008) Thermal conductivity of sandstone at high pressures and temperatures. High Temp 45(3):359–362

    Google Scholar 

  • Kahraman S, Yeken T (2010) Electrical resistivity measurement to predict uniaxial compressive and tensile strength of igneous rocks. Bull Mater Sci 33(6):731–735

    Article  Google Scholar 

  • Kök MV (2009) Effect of pressure and particle size on the thermal cracking of light crude oils in sandstone matraix. J Therm Anal Calorim 97(2):403–407

    Article  Google Scholar 

  • Lajtai EZ, Lajtai VN (1974) The evolution of brittle fracture in rocks. J Geol Soc Lond 130:1–16

    Article  Google Scholar 

  • Lu YQ, Zhao JL, Qian JD, Wang YX, Liu JY (1998) Some of the results of dilatancy diffusion seismogenic model simulated by failure test of large sample rock. Acta Seismol Sin 20(2):194–200

    Google Scholar 

  • Lü C, Sun Q, Zhang WQ, Geng JS, Qi YM, Lu LL (2017) The effect of high temperature on tensile strength of sandstone. Appl Therm Eng 111:573–579

    Article  Google Scholar 

  • Matias MJS, Habberjam GM (1986) The effect of structure and anisotropy on resistivity measurements. Geophysics 51(4):964–971

    Article  Google Scholar 

  • Morrow C, Brace WF (1981) Electrical resistivity changes in tuff due to stress. J Geophys Res 86:2929–2934

    Article  Google Scholar 

  • Oh S (2013) Geostatistical integration of seismic velocity and resistivity data for probabilistic evolution of rock quality. Environ Earth Sci 69(3):939–945

    Article  Google Scholar 

  • Skagius K, Neretnieks I (1986) Diffusivity measurements and electrical resistivity measurements in rock samples under mechanical stress. Water Resour Res 22(4):570–580

    Article  Google Scholar 

  • Sun J (2007) Archie’s formula: historical background and earlier debates. Prog Geophys 22(2):472–486

    Google Scholar 

  • Sun Q, Zhu SY (2014) Wave velocity and stress/strain in rock brittle failure. Environ Earth Sci 72(3):861–866

    Article  Google Scholar 

  • Sun Q, Zhu SY, Xue L (2015) Electrical resistivity variation in uniaxial rock compression. Arab J Geosci 8:1869–1880

    Article  Google Scholar 

  • Sun Q, Lü C, Cao LW, Li WC, Geng JS, Zhang WQ (2016) Thermal properties of sandstone after treatment at high temperature. Int J Rock Mech Min Sci 85:60–66

    Google Scholar 

  • Wang CY, Sundaram PN, Goodman RE (1978) Electrical resistivity changes in rocks during frictional sliding and fracture. Pure appl Geophys 116(4):717–731

    Article  Google Scholar 

  • Wang YH, Liu YF, Ma HT (2012) Changing regularity of rock damage variable and resistivity under loading condition. Saf Sci 50(4):718–722

    Article  Google Scholar 

  • Wang MM, Li P, Wu XW, Xu D (2017) Analysis of the stress ratio of anisotropic rocks in uniaxial tests. Int J Min Sci Technol 27(3):531–535

    Article  Google Scholar 

  • Wu G, Wang Y, Swift G, Chen J (2013) Laboratory investigation of effects of temperature on the mechanical properties of sandstone. Geotech Geol Eng 31:809–816

    Article  Google Scholar 

  • Xue L, Qin SQ, Sun Q, Wang YY, Lee LM, Li WC (2014) A study on crack damage stress thresholds of different Rock types based on uniaxial compression tests. Rock Mech Rock Eng 47(4):1183–1195

    Article  Google Scholar 

  • Zhang LY, Mao XB, Liu AH (2009) Experimental study of on the mechanical properties of rocks at high temperature. Sci China Ser E Tech Sci 52(3):641–646

    Article  Google Scholar 

  • Zhang WQ, Sun Q, Hao SQ, Geng JS, Lv C (2016a) Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng 98:1297–1304

    Article  Google Scholar 

  • Zhang WQ, Sun Q, Hao SQ, Yang LN (2016b) Experimental study of the effect of thermal damage on resistivity and mechanical properties of sandstone. Acta Geodyn Geomater 13(2):185–192

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Fundamental Research Funds for the Central Universities (2017XKQY024) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, C., Sun, Q. Electrical Resistivity Evolution and Brittle Failure of Sandstone After Exposure to Different Temperatures. Rock Mech Rock Eng 51, 639–645 (2018). https://doi.org/10.1007/s00603-017-1351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1351-7

Keywords

Navigation