Rock Mechanics and Rock Engineering

, Volume 50, Issue 10, pp 2601–2625 | Cite as

Experimental Study of the Shear Strength of Bonded Concrete–Rock Interfaces: Surface Morphology and Scale Effect

  • Hussein Mouzannar
  • Marion Bost
  • Madly Leroux
  • Didier Virely
Original Paper


The shear strength of the concrete–rock interface is a key factor to justify the stability of a hydraulic structure foundation. The Mohr–Coulomb failure criterion is usually used as shear strength and evaluated by extrapolating shear tests results carried out in a laboratory on small-sized samples. This paper presents an experimental study on the concrete–rock interface shear behavior. The effect of rock surface morphology on shear behavior was studied by performing laboratory direct shear tests on prepared square samples with a previously characterized rock surface. The scale effect and the test conditions were also studied by comparing the results to those obtained by performing usual laboratory shear tests on cored samples at lower scale. The tested interfaces were composed of the same concrete and granite and have a natural rock surface. The results displayed that the peak shear strength is strongly dependent on the concrete–rock bonding, the rock surface morphology and the applied normal load. A new surface morphology description tool was developed in order to characterize the main waviness. Moreover, the concrete–rock shear behavior at medium scale was reproduced by a 2D finite elements model to study the stress distribution along the sheared interface. Under low normal load, the concrete–rock adhesion is thus progressively mobilized according to the waviness on the rock surface and the local shear failure mechanisms depend on the type of this main waviness. Consequently the shear strength of a concrete–rock interface must be analyzed with respect to the various morphology aspects on its rock surface.


Concrete–rock interface Shear strength Surface morphology Scale effect Direct shear test 



This research program was made possible by the financial support of Electricité de France (EDF—French Electricity Company).


  1. Abaqus (2012) Abaqus analysis user’s manual. Dassault system.
  2. Andjelkovic V, Pavlovic N, Lazarevic Z, Nedovic V (2015) Modeling of shear characteristics at the concrete–rock mass interface. Int J Rock Mech Min Sci 76(1):222–236. doi: 10.1016/j.ijrmms.2015.03.024 Google Scholar
  3. Armand G (2000) Contribution à la caractérisation en laboratoire et à la modélisation constitutive du comportement mécanique des joints rocheux. Dissertation, University of Grenoble 1, FranceGoogle Scholar
  4. Bandis S, Lumsden AC, Barton NR (1981) Experimental studies of scale effects on the bahavior of rock joints. Int J Rock Mech Min Sci 18(1):1–21. doi: 10.1016/0148-9062(81)90262-X CrossRefGoogle Scholar
  5. Barla G, Robotti F, Vai L (2011) Revisiting large size direct shear testing of rock mass foundations. In: 6th international conference on dam engineering, Lisbon, PortugalGoogle Scholar
  6. Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10(1):1–54. doi: 10.1007/BF01261801 CrossRefGoogle Scholar
  7. Bauret S, Rivard P (2015) Predicting the tensile bond strength of the concrete–rock interface through a parametric laboratory study. In: Annual conference of Canadian dam association, Mississauga, ON, CanadaGoogle Scholar
  8. Castelli M, Re F, Scavia C, Zaninetti A (2001) Experimental evaluation of scale effects on the mechanical behavior of rock joints. In: Proceedings of Eurock 2001 rock mechanics—a challenge for society, Espoo, FinlandGoogle Scholar
  9. CEB-FIB (1993) Model code 1990. Thomas Telford Ltd. doi: 10.1680/ceb-fipmc1990.35430
  10. CFBR (2013) Recommendations for the justification of the stability of gravity dams. Comité Français des Barrages et Réservoirs, Justification of gravity dams work group, FranceGoogle Scholar
  11. Champagne K, Rivard P, Quirion M (2013) Paramètres de résistance au cisaillement associés aux discontinuités des barrages en béton du Québec. In: Annual conference of Canadian dam association, Montréal, Québec, CanadaGoogle Scholar
  12. Cravero M, Iabichino G, Piovano V (1995) Analysis of large joint profiles related to rock slope instabilities. In: 8th conference of ISRM, Tokyo, JapanGoogle Scholar
  13. Curtis DD (2011) Estimated shear strength of shear keys and bonded joints in concrete dams. 21st Century dam design—advances and adaptations. In: 31st annual conference of USSD, San Diego, California, USAGoogle Scholar
  14. Deveze G, Coubard G (2015) Développement d’une base de données sur la résistance à la traction de l’interface béton-roche. Colloque du comité français des barrages et réservoirs: fondations des barrages, Chambéry, FranceGoogle Scholar
  15. El-Soudani SM (1978) Profilometric analysis of fractures. Metallography 11(3):247–336. doi: 10.1016/0026-0800(78)90045-9 CrossRefGoogle Scholar
  16. EPRI (1992) Uplift pressures, shear strengths and tensile strengths for stability analysis of concrete gravity dams, vol 1. Electrical Power Research Institute. Prepared by stone and webster engineering corporation. Denver, ColoradoGoogle Scholar
  17. Fardin N, Stephansson O, Jing L (2003) Scale effect on the geometrical and mechanical properties of rock joints. In: 10th conference of ISRM, Sandton, South AfricaGoogle Scholar
  18. Gentier S (1987) Morphologie et comportement hydromécanique d’une fracture naturelle dans le granite sous contrainte normale: Etude expérimentale et théorique. Rapport de thèse, Université d’Orléans, France, p 597. No. 1986ORLE2013Google Scholar
  19. Ghosh, AK (2010) Shear strength of dam-foundations rock interface—a case study. In: Annual conference of Indian geotechnical society, Umbai, Maharashtra, IndiaGoogle Scholar
  20. Grasselli G (2001) Shear strength of rock joints based on quantified surface description. Dissertation, Ecole polytechnique federale de Lausanne, SuisseGoogle Scholar
  21. Gutiérrez MC (2013) Shear resistance for concrete dams. Dissertation, Norwegian University of Science and Technology, Trondheim, NorvègeGoogle Scholar
  22. Johansson F (2009) Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams. Disseretation, Royal Institute of Technology, Stockholm, SwedenGoogle Scholar
  23. Khosravi A, Sadaghiani MH, Khosravi M, Meehan CL (2013) The effect of asperity inclination and orientation on the shear behavior of rock joints. Geotech Test J 36(3):1–14. doi: 10.1520/GTJ20120060 CrossRefGoogle Scholar
  24. Kodikara JK, Johnston IW (1994) Shear behaviour of irregular triangular concrete–rock joints. Int J Rock Mech Min Sci 31(4):313–322. doi: 10.1016/0148-9062(94)90900-8 CrossRefGoogle Scholar
  25. Krounis A, Johansson F, Larsson S (2015) Effects of spatial variation in cohesion over the concrete–rock interface on dam sliding stability. Rock Mech Geotech Eng 7(6):659–667. doi: 10.1016/j.jrmge.2015.08.005 CrossRefGoogle Scholar
  26. Krounis A, Johansson F, Larsson S (2016) Shear strength of partially bonded concrete–rock interfaces for application in dam stability analyses. J Rock Mech Geotech Eng 49(7):2711–2722. doi: 10.1007/s00603-016-0962-8 CrossRefGoogle Scholar
  27. Lo KY, Lukajic B, Wang S, Ogawa T, Tsui KK (1990) Evaluation of strength parameters of concrete–rock interface for dam safety assessment: session 2—Dam Safety Assessments. Canadian Dam Safety Conference, Toronto, Ontario, CanadaGoogle Scholar
  28. Lo KY, Ogawa T, Lukajic B, Dupak DD (1991) Measurement of strength parameters of concrete–rock contact at the dam-foundation interface. Geotech Test J 14(4):383–394. doi: 10.1520/GTJ10206J CrossRefGoogle Scholar
  29. Maksimovic M (1996) The shear strength components of a rough rock joint. Int J Rock Mech Min Sci 33(8):769–783. doi: 10.1016/0148-9062(95)00005-4 CrossRefGoogle Scholar
  30. Moradian Z (2011) Application de la méthode d’émission acoustique pour la surveillance du comportement au cisaillement des joints actifs. Dissertation, University of Sherbrooke, Québec, CanadaGoogle Scholar
  31. Moradian Z, Ballivy G, Rivard P (2012) Application of acoustic emission for monitoring shear behavior of bonded concrete–rock joints under direct shear test. Can J Civ Eng 39(8):887–896. doi: 10.1139/l2012-073 CrossRefGoogle Scholar
  32. MTS (2014) MTS model 815 and 816 rock mechanics test systems.
  33. Muralha J, Grasselli G, Tatone B, Blümel M, Chryssanthakis P, Yujing J (2014) ISRM suggested method for laboratory determination of the shear strength of rock joints: revised version. Rock Mech Rock Eng 47(1):291–302. doi: 10.1007/s00603-013-0519-z CrossRefGoogle Scholar
  34. Myers NO (1962) Characterization of surface roughness. Wear 5(3):182–189. doi: 10.1016/0043-1648(62)90002-9 CrossRefGoogle Scholar
  35. OriginLab (2016) Algorithms—non linear curve fitting.
  36. Patton FD (1966) Multiple modes of shear failure in rock. In: 1st conference of ISRM, Lisbon, PortugalGoogle Scholar
  37. Ruggeri G, Pellegrini R, Rubin de Celix M et al (2004) Sliding stability of existing gravity dams—final report. ICOLD European working group on sliding safety of existing gravity damsGoogle Scholar
  38. Saiang D, Malmgren L, Nordlund E (2005) Laboratory tests on shotcrete-rock joints in direct shear, tension and compression. Rock Mech Rock Eng 38(4):275–297. doi: 10.1007/s00603-005-0055-6 CrossRefGoogle Scholar
  39. Tatone B, Grasselli G (2009) A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials. Review of Scientific Instruments 80(12):125110-1:10. doi: 10.1063/1.3266964 CrossRefGoogle Scholar
  40. Tatone B, Grasselli G (2012) Modeling direct shear tests with FEM/DEM: investigation of discontinuity shear strength scale effect as an emergent characteristic. In: Conference of American rock mechanics, Chicago, USAGoogle Scholar
  41. Tatone B, Grasselli G (2013) An investigation of discontinuity roughness scale dependency using high-resolution surface measurements. Rock Mech Rock Eng 46(4):657–681. doi: 10.1007/s00603-012-0294-2 CrossRefGoogle Scholar
  42. Tian HM, Chen WZ, Yang DS, Yang JP (2015) Experimental and numerical analysis of the shear behavior of cemented concrete–rock joints. Rock Mech Rock Eng 48(1):213–222. doi: 10.1007/s00603-014-0560-6 CrossRefGoogle Scholar
  43. Westberg Wilde M, Johansson F (2013) System reliability of concrete dams with respect to foundation stability: application to a spillway. Geotech Geoenviron Eng 139(2):308–319. doi: 10.1061/(ASCE)GT.1943-5606.0000761 CrossRefGoogle Scholar
  44. XP P 94-424 (2003) French standard: cisaillement direct selon une discontinuité de roche. ISSN 0335-3931Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Geotechnical Engineering, Environment, Natural Hazards and Earth Sciences DepartmentIFSTTARBronFrance
  2. 2.Technical Department for Geological, Geotechnical and Civil Engineering TestingEDFAix-en-ProvenceFrance
  3. 3.Direction territoriale Sud-OuestCEREMAToulouseFrance

Personalised recommendations