Rock Mechanics and Rock Engineering

, Volume 50, Issue 10, pp 2585–2600 | Cite as

Effect of Water Saturation on the Fracture and Mechanical Properties of Sedimentary Rocks

  • Debanjan Guha Roy
  • T. N. Singh
  • J. Kodikara
  • Ratan Das
Original Paper

Abstract

Fracture and mechanical properties of the water saturated sedimentary rocks have been experimentally investigated in the present paper. Three types of sandstones and one type of shale were saturated in water for different periods of time. They were then tested for their index geomechanical properties such as Brazilian tensile strength (BTS), Young’s modulus (YM), P-wave velocity and all pure and mixed-mode fracture toughness (FT). FT was measured using semicircular bend specimens in a three-point bend set-up. All the geomechanical and fracture properties of the saturated rocks were compared together to investigate their interrelations. Further, statistical methods were employed to measure the statistical significance of such relationships. Next, three types of fracture criteria were compared with the present experimental results. Results show that degree of saturation has significant effect on both the strength and fracture properties of sedimentary rock. A general decrease in the mechanical and fracture toughness was noticed with increasing saturation levels. But, t-test confirmed that FT, BTS, P-wave velocity and YM are strongly dependent on each other and linear relationships exist across all the saturation values. Calculation of the ‘degradation degree’ (DD) appeared to be a difficult task for all types of sedimentary rocks. While in sandstone, both the BTS and mode-I FT overestimated the DD calculated by YM method, in shale BTS was found to give a closure value.

Keywords

Fracture toughness Tensile strength Young’s modulus Saturation P-wave velocity 

List of symbols

KIC

Mode-I fracture toughness (mode-I FT)

KIIC

Mode-II fracture toughness (mode-II FT)

Keff

Mixed-mode fracture toughness (mixed-mode FT)

KIC0

Mode-I fracture toughness of a dry rock

KIIC0

Mode-II fracture toughness of a dry rock

Keff0

Mixed-mode fracture toughness of a dry rock

s

Span of support roller

σt

Brazilian tensile strength (BTS)

σt0

Brazilian tensile strength of a dry rock

E

Young’s modulus (YM)

E0

Young’s modulus of a dry rock

Vp

P-wave velocity

Vp0

P-wave velocity of a dry rock

CMOD

Crack mouth opening displacement

Pmax

Failure load of the semicircular bend specimen

P

Failure load of tensile disc

t

Thickness of the tensile disc

D

Diameter of the tensile disc

a

Notch length of fracture toughness specimen

R

Radius of fracture toughness specimen

B

Thickness of fracture toughness specimen

Y′

Mode-I non-dimensional stress intensity factor

Y″

Mode-II non-dimensional stress intensity factor

DYM

Young’s modulus-based degradation degree

DBTS

BTS-based degradation degree

DFT

Fracture toughness-based degradation degree

References

  1. Abd-Elhady A (2013) Mixed mode I/II stress intensity factors through the thickness of disc type specimens. Eng Solid Mech 1(14):119–128CrossRefGoogle Scholar
  2. Aliha MRM, Ayatollahi MR (2009) Brittle fracture evaluation of a fine grain cement mortar in combined tensile-shear deformation. Fatigue Fract Eng Mater 32(12):987–994. doi: 10.1111/j.1460-2695.2009.01402.x CrossRefGoogle Scholar
  3. Aliha MRM, Ayatollahi MR (2013) Two-parameter fracture analysis of SCB specimen under mixed-mode loading. Eng Fract Mech 103:115–123. doi: 10.1016/j.engfracmech.2012.09.021 CrossRefGoogle Scholar
  4. Aliha MRM, Ayatollahi MR (2014) Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure mode I and II loading—a statistical approach. Theor Appl Fract Mech 69:17–25. doi: 10.1016/j.tafmec.2013.11.008 CrossRefGoogle Scholar
  5. Aliha MRM, Ayatollahi MR, Pakzad R (2008) Brittle fracture analysis using a ring-shape specimen containing two angled cracks. Int J Fract 153(1):63–68. doi: 10.1007/s10704-008-9280-9 CrossRefGoogle Scholar
  6. Aliha MRM, Ayatollahi MR, Smith DJ, Pavier MJ (2010) Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech 77(11):2200–2212. doi: 10.1016/j.engfracmech.2010.03.009 CrossRefGoogle Scholar
  7. Aliha MRM, Ayatollahi MR, Akbardoost J (2012) Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock materials. Rock Mech Rock Eng 45(1):5–74. doi: 10.1007/s00603-011-0167-0 CrossRefGoogle Scholar
  8. Aliha MRM, Hosseinpour GR, Ayatollahi MR (2013) Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mech Rock Eng 46(5):1023–1034. doi: 10.1007/s00603-012-0325-z CrossRefGoogle Scholar
  9. Al-Shayea NA, Khan K, Abduljauwad SN (2000) Effects of confining pressure and temperature on mixed-mode (I–II) fracture toughness of a limestone rock. Int J Rock Mech Min Sci 37(4):629–643. doi: 10.1016/S1365-1609(00)00003-4 CrossRefGoogle Scholar
  10. Ayatollahi MR, Aliha MRM (2007a) Fracture toughness study for a brittle rock subjected to mixed-mode I/II loading. Int J Rock Mech Min Sci 44:617–624. doi: 10.1016/j.ijrmms.2006.10.001 CrossRefGoogle Scholar
  11. Ayatollahi MR, Aliha MRM (2007b) Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Comput Mater Sci 38(4):660–670. doi: 10.1016/j.commatsci.2006.04.008 CrossRefGoogle Scholar
  12. Ayatollahi MR, Aliha MRM (2008) On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Eng Fract Mech 75(16):4631–4641. doi: 10.1016/j.engfracmech.2008.06.018 CrossRefGoogle Scholar
  13. Berto F, Gomez G (2017) Notched plates in mixed mode loading (I + II): a review based on the local strain energy density and the cohesive zone mode. Eng Solid Mech 5(1):1–8. doi: 10.5267/j.esm.2016.11.002 CrossRefGoogle Scholar
  14. Hawkes I, Bieniawski ZT (1978) Suggested methods for determining tensile strength of rock materials. In: Ulusay R, Hudson JA (eds) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. ISRM Turkish National Group, Ankara, pp 177–183Google Scholar
  15. Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng T ASME 85(4):519–525. doi: 10.1115/1.3656897 CrossRefGoogle Scholar
  16. Erguler ZA, Ulusay R (2009) Water-induced variations in mechanical properties of clay-bearing rocks. Int J Rock Mech Min Sci 46(2):355–370. doi: 10.1016/j.ijrmms.2008.07.002 CrossRefGoogle Scholar
  17. Fayed AS (2017) Numerical analysis of mixed mode I/II stress intensity factors of edge slant cracked plates. Eng Solid Mech 5(1):61–70. doi: 10.5267/j.esm.2016.8.001 CrossRefGoogle Scholar
  18. Funatsu T, Seto M, Shimada H, Matsui K, Kuruppu MD (2002) Combined effect of increasing temperature and confining pressure on fracture toughness of Kimachi sandstone. In: 5th NARMS-TAC conference, Toronto, Ontario, Canada. pp 1017–1021Google Scholar
  19. Funatsu T, Seto M, Shimada H, Matsui K, Kuruppu M (2004) Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks. Int J Rock Mech Min Sci 41(6):927–938. doi: 10.1016/j.ijrmms.2004.02.008 CrossRefGoogle Scholar
  20. Funatsu T, Kuruppu M, Matsui K (2014) Effects of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone. Int J Rock Mech Min Sci 67:1–8. doi: 10.1016/j.ijrmms.2013.12.009 Google Scholar
  21. Gautam PK, Verma AK, Maheshwar S, Singh TN (2015) Thermomechanical analysis of different types of sandstone at elevated temperature. Rock Mech Rock Eng 49(5):1985–1993. doi: 10.1007/s00603-015-0797-8 CrossRefGoogle Scholar
  22. Guha Roy D, Singh TN (2016) Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition. Rock Mech Rock Eng 49(5):1663–1677. doi: 10.1007/s00603-015-0891-y CrossRefGoogle Scholar
  23. Hua W, Dong S, Li Y, Xu J, Wang Q (2015) The influence of cyclic wetting and drying on the fracture toughness of sandstone. Int J Rock Mech Min 78:331–335. doi: 10.1016/j.ijrmms.2015.06.010 Google Scholar
  24. Hua W, Dong S, Li Y, Wang Q (2016) Effect of cyclic wetting and drying on the pure mode II fracture toughness of sandstone. Eng Fract Mech 153:143–150. doi: 10.1016/j.engfracmech.2015.11.020 CrossRefGoogle Scholar
  25. Hussain M, Pu S, Underwood J (1974) Strain energy release rate for a crack under combined mode I and mode II. In: Fracture analysis, ASTM STP-560, American Society for Testing Materials. pp 2–28. doi:  10.1520/STP33130S
  26. ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Suggested methods prepared by the commission on testing methods. In: Ulusay R, Hudson JA (eds) Compilation arranged by the ISRM Turkish National Group ISRM. Ankara. ISBN: 978-975- 93675-4-1Google Scholar
  27. Jia H, Xiang W, Krautblatter M (2015) Quantifying rock fatigue and decreasing compressive and tensile strength after repeated freeze–thaw cycles. Permafr Periglac Process 26:368–377. doi: 10.1002/ppp.1857 CrossRefGoogle Scholar
  28. Jin Y, Yuan J, Chen M, Chen KP, Lu Y, Wang H (2011) Determination of rock fracture toughness KIIC and its relationship with tensile strength. Rock Mech Rock Eng 44:621–627. doi: 10.1007/s00603-011-0158-1 CrossRefGoogle Scholar
  29. Kahraman S (2007) The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics 46(4):341–348. doi: 10.1016/j.ultras.2007.05.003 CrossRefGoogle Scholar
  30. Karakul H, Ulusay R (2013) Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation. Rock Mech Rock Eng 46(5):981–999. doi: 10.1007/s00603-012-0353-8 CrossRefGoogle Scholar
  31. Khan K, Al-Shayea NA (2000) Effect of specimen geometry and testing method on mixed mode I–II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech Rock Eng 33(3):179–206. doi: 10.1007/s006030070006 CrossRefGoogle Scholar
  32. King MS (2009) Recent developments in seismic rock physics. Int J Rock Mech Min Sci 46(8):1341–1348. doi: 10.1016/j.ijrmms.2009.04.008 CrossRefGoogle Scholar
  33. Klimentos T (1991) The effects of porosity-permeability-clay content on the velocity of compressional waves. Geophysics 56:1930–1939. doi: 10.1190/1.1443004 CrossRefGoogle Scholar
  34. Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2014) ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Min 47:267–274. doi: 10.1007/s00603-013-0422-7 CrossRefGoogle Scholar
  35. Kwaśniewski M, Rodríguez-Oitaben P (2009) Effect of water on the deformability of rocks under uniaxial compression. In: ISRM regional symposium EUROCK 2009 rock engineering in different ground conditions-soft rock and karst. Dubrovnik, Cavtat, Croatia. pp 271–276Google Scholar
  36. Lashkaripour GR (2002) Predicting mechanical properties of mudrock from index parameters. Bull Eng Geol Environ 61(1):73–77. doi: 10.1007/s100640100116 CrossRefGoogle Scholar
  37. Li W, Pour-Ghaz M, Castro J, Weiss J (2012) Water absorption and critical degree of saturation relating to freeze-thaw damage in concrete pavement joints. J Mater Civ Eng 24(3):299–307. doi: 10.1061/(ASCE)MT.1943-5533.0000383 CrossRefGoogle Scholar
  38. Lim I, Johnston I, Choi S (1993) Stress intensity factors for semi-circular specimens under three-point bending. Eng Fract Mech 47:267–274. doi: 10.1016/0013-7944(93)90030-V Google Scholar
  39. Lim IL, Johnston IW, Choi SK, Boland JN (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 2-mixed-mode. Int J Rock Mech Min Sci Geomech Abstr 31(3):199–212CrossRefGoogle Scholar
  40. Mahanta B, Singh TN, Ranjith PG (2016) Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol 210:103–114. doi: 10.1016/j.enggeo.2016.06.008 CrossRefGoogle Scholar
  41. Nara Y, Morimoto K, Hiroyoshi N, Yoneda Kaneko K, Benson PM (2012) Influence of relative humidity on fracture toughness of rock: implications for subcritical crack growth. Int J Solids Struct 49(18):2471–2481. doi: 10.1016/j.ijsolstr.2012.05.009 CrossRefGoogle Scholar
  42. Ojo O, Brook N (1990) The effect of moisture on some mechanical properties of rock. Min Sci Technol 10(2):145–156. doi: 10.1016/0167-9031(90)90158-O CrossRefGoogle Scholar
  43. Reinhardt HW, Mielich O (2014) Fracture toughness of alkali-sensitive rocks in alkaline solution. Int J Rock Mech Min Sci 70:552–558. doi: 10.1016/j.ijrmms.2014.06.014 Google Scholar
  44. Saito T (1981) Variation of physical properties of igneous rock in weathering. In: Proceedings of international symposium on weak rock, Tokyo, vol 1. pp 191–196Google Scholar
  45. Sharma PK, Singh TN (2006) Effect of saline water on strength and durability of granite rock-a case study. Indian Min Eng J 8(3):20–26Google Scholar
  46. Shukla R, Ranjith PG, Choi SK, Haque A, Yellishetty M, Hong L (2013) Mechanical behaviour of reservoir rock under brine saturation. Rock Mech Rock Eng 46:83–93. doi: 10.1007/s00603-012-0246-x CrossRefGoogle Scholar
  47. Sih G (1974) Strain–energy–density factor applied to mixed mode crack problems. Int J Fract 10(3):305–321. doi: 10.1007/BF00035493 CrossRefGoogle Scholar
  48. Utagawa M, Seto M, Kosugi M, Katsuyama K, Matsui K (1999) The evaluation of fracture toughness of rock in wet and chemical condition. In: Proceedings of 1999 Japan–Korea joint symposium on rock engineering. pp 573–578Google Scholar
  49. Vásárhelyi B (2005) Statistical analysis of the influence of water content on the strength of Miocene limestone. Rock Mech Rock Eng 38(1):69–76. doi: 10.1007/s00603-004-0034-3 CrossRefGoogle Scholar
  50. Vàsàrhelyi B, Van P (2006) Influence of water content on the strength of rock. Eng Geol 84:70–74. doi: 10.1016/j.enggeo.2005.11.011 CrossRefGoogle Scholar
  51. Vishal V, Ranjith PG, Singh TN (2015) An experimental investigation on behaviour of coal under fluid saturation, using acoustic emission. J Nat Gas Sci Eng 22:428–436. doi: 10.1016/j.jngse.2014.12.020 CrossRefGoogle Scholar
  52. Wong LNY, Maruvanchery V, Liu G (2015) Water effects on rock strength and stiffness degradation. Acta Geotech 11(4):713–737. doi: 10.1007/s11440-015-0407-7 CrossRefGoogle Scholar
  53. Xian-biao M, Lian-ying Z, Tian-zhen L, Hai-shun L (2009) Properties of failure mode and thermal damage for limestone at high temperature. Min Sci Technol 19(3):290–294. doi: 10.1016/S1674-5264(09)60054-5 Google Scholar
  54. Zhang ZX (2002) An empirical relation between mode I fracture toughness and the tensile strength of rock. Int J Rock Mech Min Sci 39(3):401–406. doi: 10.1016/S1365-1609(02)00032-1 CrossRefGoogle Scholar
  55. Zhixi C, Mian C, Yan J, Rongzun H (1997) Determination of rock fracture toughness and its relationship with acoustic velocity. Int J Rock Mech Min Sci 34(3–4):49. doi: 10.1016/S1365-1609(97)00148-2 Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Debanjan Guha Roy
    • 1
  • T. N. Singh
    • 2
  • J. Kodikara
    • 3
  • Ratan Das
    • 2
  1. 1.IITB-Monash Research AcademyIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Earth SciencesIndian Institute of Technology BombayMumbaiIndia
  3. 3.Department of Civil EngineeringMonash UniversityClaytonAustralia

Personalised recommendations