Skip to main content
Log in

Effect of Water Saturation on the Fracture and Mechanical Properties of Sedimentary Rocks

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Fracture and mechanical properties of the water saturated sedimentary rocks have been experimentally investigated in the present paper. Three types of sandstones and one type of shale were saturated in water for different periods of time. They were then tested for their index geomechanical properties such as Brazilian tensile strength (BTS), Young’s modulus (YM), P-wave velocity and all pure and mixed-mode fracture toughness (FT). FT was measured using semicircular bend specimens in a three-point bend set-up. All the geomechanical and fracture properties of the saturated rocks were compared together to investigate their interrelations. Further, statistical methods were employed to measure the statistical significance of such relationships. Next, three types of fracture criteria were compared with the present experimental results. Results show that degree of saturation has significant effect on both the strength and fracture properties of sedimentary rock. A general decrease in the mechanical and fracture toughness was noticed with increasing saturation levels. But, t-test confirmed that FT, BTS, P-wave velocity and YM are strongly dependent on each other and linear relationships exist across all the saturation values. Calculation of the ‘degradation degree’ (DD) appeared to be a difficult task for all types of sedimentary rocks. While in sandstone, both the BTS and mode-I FT overestimated the DD calculated by YM method, in shale BTS was found to give a closure value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

K IC :

Mode-I fracture toughness (mode-I FT)

K IIC :

Mode-II fracture toughness (mode-II FT)

K eff :

Mixed-mode fracture toughness (mixed-mode FT)

K IC0 :

Mode-I fracture toughness of a dry rock

K IIC0 :

Mode-II fracture toughness of a dry rock

K eff0 :

Mixed-mode fracture toughness of a dry rock

s :

Span of support roller

σ t :

Brazilian tensile strength (BTS)

σ t0 :

Brazilian tensile strength of a dry rock

E :

Young’s modulus (YM)

E 0 :

Young’s modulus of a dry rock

Vp:

P-wave velocity

Vp0 :

P-wave velocity of a dry rock

CMOD:

Crack mouth opening displacement

P max :

Failure load of the semicircular bend specimen

P :

Failure load of tensile disc

t :

Thickness of the tensile disc

D :

Diameter of the tensile disc

a :

Notch length of fracture toughness specimen

R :

Radius of fracture toughness specimen

B :

Thickness of fracture toughness specimen

Y′ :

Mode-I non-dimensional stress intensity factor

Y″ :

Mode-II non-dimensional stress intensity factor

D YM :

Young’s modulus-based degradation degree

D BTS :

BTS-based degradation degree

D FT :

Fracture toughness-based degradation degree

References

  • Abd-Elhady A (2013) Mixed mode I/II stress intensity factors through the thickness of disc type specimens. Eng Solid Mech 1(14):119–128

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR (2009) Brittle fracture evaluation of a fine grain cement mortar in combined tensile-shear deformation. Fatigue Fract Eng Mater 32(12):987–994. doi:10.1111/j.1460-2695.2009.01402.x

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR (2013) Two-parameter fracture analysis of SCB specimen under mixed-mode loading. Eng Fract Mech 103:115–123. doi:10.1016/j.engfracmech.2012.09.021

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR (2014) Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure mode I and II loading—a statistical approach. Theor Appl Fract Mech 69:17–25. doi:10.1016/j.tafmec.2013.11.008

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Pakzad R (2008) Brittle fracture analysis using a ring-shape specimen containing two angled cracks. Int J Fract 153(1):63–68. doi:10.1007/s10704-008-9280-9

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Smith DJ, Pavier MJ (2010) Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech 77(11):2200–2212. doi:10.1016/j.engfracmech.2010.03.009

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Akbardoost J (2012) Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock materials. Rock Mech Rock Eng 45(1):5–74. doi:10.1007/s00603-011-0167-0

    Article  Google Scholar 

  • Aliha MRM, Hosseinpour GR, Ayatollahi MR (2013) Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mech Rock Eng 46(5):1023–1034. doi:10.1007/s00603-012-0325-z

    Article  Google Scholar 

  • Al-Shayea NA, Khan K, Abduljauwad SN (2000) Effects of confining pressure and temperature on mixed-mode (I–II) fracture toughness of a limestone rock. Int J Rock Mech Min Sci 37(4):629–643. doi:10.1016/S1365-1609(00)00003-4

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2007a) Fracture toughness study for a brittle rock subjected to mixed-mode I/II loading. Int J Rock Mech Min Sci 44:617–624. doi:10.1016/j.ijrmms.2006.10.001

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2007b) Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Comput Mater Sci 38(4):660–670. doi:10.1016/j.commatsci.2006.04.008

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2008) On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Eng Fract Mech 75(16):4631–4641. doi:10.1016/j.engfracmech.2008.06.018

    Article  Google Scholar 

  • Berto F, Gomez G (2017) Notched plates in mixed mode loading (I + II): a review based on the local strain energy density and the cohesive zone mode. Eng Solid Mech 5(1):1–8. doi:10.5267/j.esm.2016.11.002

    Article  Google Scholar 

  • Hawkes I, Bieniawski ZT (1978) Suggested methods for determining tensile strength of rock materials. In: Ulusay R, Hudson JA (eds) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. ISRM Turkish National Group, Ankara, pp 177–183

    Google Scholar 

  • Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng T ASME 85(4):519–525. doi:10.1115/1.3656897

    Article  Google Scholar 

  • Erguler ZA, Ulusay R (2009) Water-induced variations in mechanical properties of clay-bearing rocks. Int J Rock Mech Min Sci 46(2):355–370. doi:10.1016/j.ijrmms.2008.07.002

    Article  Google Scholar 

  • Fayed AS (2017) Numerical analysis of mixed mode I/II stress intensity factors of edge slant cracked plates. Eng Solid Mech 5(1):61–70. doi:10.5267/j.esm.2016.8.001

    Article  Google Scholar 

  • Funatsu T, Seto M, Shimada H, Matsui K, Kuruppu MD (2002) Combined effect of increasing temperature and confining pressure on fracture toughness of Kimachi sandstone. In: 5th NARMS-TAC conference, Toronto, Ontario, Canada. pp 1017–1021

  • Funatsu T, Seto M, Shimada H, Matsui K, Kuruppu M (2004) Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks. Int J Rock Mech Min Sci 41(6):927–938. doi:10.1016/j.ijrmms.2004.02.008

    Article  Google Scholar 

  • Funatsu T, Kuruppu M, Matsui K (2014) Effects of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone. Int J Rock Mech Min Sci 67:1–8. doi:10.1016/j.ijrmms.2013.12.009

    Google Scholar 

  • Gautam PK, Verma AK, Maheshwar S, Singh TN (2015) Thermomechanical analysis of different types of sandstone at elevated temperature. Rock Mech Rock Eng 49(5):1985–1993. doi:10.1007/s00603-015-0797-8

    Article  Google Scholar 

  • Guha Roy D, Singh TN (2016) Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition. Rock Mech Rock Eng 49(5):1663–1677. doi:10.1007/s00603-015-0891-y

    Article  Google Scholar 

  • Hua W, Dong S, Li Y, Xu J, Wang Q (2015) The influence of cyclic wetting and drying on the fracture toughness of sandstone. Int J Rock Mech Min 78:331–335. doi:10.1016/j.ijrmms.2015.06.010

    Google Scholar 

  • Hua W, Dong S, Li Y, Wang Q (2016) Effect of cyclic wetting and drying on the pure mode II fracture toughness of sandstone. Eng Fract Mech 153:143–150. doi:10.1016/j.engfracmech.2015.11.020

    Article  Google Scholar 

  • Hussain M, Pu S, Underwood J (1974) Strain energy release rate for a crack under combined mode I and mode II. In: Fracture analysis, ASTM STP-560, American Society for Testing Materials. pp 2–28. doi: 10.1520/STP33130S

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Suggested methods prepared by the commission on testing methods. In: Ulusay R, Hudson JA (eds) Compilation arranged by the ISRM Turkish National Group ISRM. Ankara. ISBN: 978-975- 93675-4-1

  • Jia H, Xiang W, Krautblatter M (2015) Quantifying rock fatigue and decreasing compressive and tensile strength after repeated freeze–thaw cycles. Permafr Periglac Process 26:368–377. doi:10.1002/ppp.1857

    Article  Google Scholar 

  • Jin Y, Yuan J, Chen M, Chen KP, Lu Y, Wang H (2011) Determination of rock fracture toughness KIIC and its relationship with tensile strength. Rock Mech Rock Eng 44:621–627. doi:10.1007/s00603-011-0158-1

    Article  Google Scholar 

  • Kahraman S (2007) The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics 46(4):341–348. doi:10.1016/j.ultras.2007.05.003

    Article  Google Scholar 

  • Karakul H, Ulusay R (2013) Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation. Rock Mech Rock Eng 46(5):981–999. doi:10.1007/s00603-012-0353-8

    Article  Google Scholar 

  • Khan K, Al-Shayea NA (2000) Effect of specimen geometry and testing method on mixed mode I–II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech Rock Eng 33(3):179–206. doi:10.1007/s006030070006

    Article  Google Scholar 

  • King MS (2009) Recent developments in seismic rock physics. Int J Rock Mech Min Sci 46(8):1341–1348. doi:10.1016/j.ijrmms.2009.04.008

    Article  Google Scholar 

  • Klimentos T (1991) The effects of porosity-permeability-clay content on the velocity of compressional waves. Geophysics 56:1930–1939. doi:10.1190/1.1443004

    Article  Google Scholar 

  • Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2014) ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Min 47:267–274. doi:10.1007/s00603-013-0422-7

    Article  Google Scholar 

  • Kwaśniewski M, Rodríguez-Oitaben P (2009) Effect of water on the deformability of rocks under uniaxial compression. In: ISRM regional symposium EUROCK 2009 rock engineering in different ground conditions-soft rock and karst. Dubrovnik, Cavtat, Croatia. pp 271–276

  • Lashkaripour GR (2002) Predicting mechanical properties of mudrock from index parameters. Bull Eng Geol Environ 61(1):73–77. doi:10.1007/s100640100116

    Article  Google Scholar 

  • Li W, Pour-Ghaz M, Castro J, Weiss J (2012) Water absorption and critical degree of saturation relating to freeze-thaw damage in concrete pavement joints. J Mater Civ Eng 24(3):299–307. doi:10.1061/(ASCE)MT.1943-5533.0000383

    Article  Google Scholar 

  • Lim I, Johnston I, Choi S (1993) Stress intensity factors for semi-circular specimens under three-point bending. Eng Fract Mech 47:267–274. doi:10.1016/0013-7944(93)90030-V

    Google Scholar 

  • Lim IL, Johnston IW, Choi SK, Boland JN (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 2-mixed-mode. Int J Rock Mech Min Sci Geomech Abstr 31(3):199–212

    Article  Google Scholar 

  • Mahanta B, Singh TN, Ranjith PG (2016) Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol 210:103–114. doi:10.1016/j.enggeo.2016.06.008

    Article  Google Scholar 

  • Nara Y, Morimoto K, Hiroyoshi N, Yoneda Kaneko K, Benson PM (2012) Influence of relative humidity on fracture toughness of rock: implications for subcritical crack growth. Int J Solids Struct 49(18):2471–2481. doi:10.1016/j.ijsolstr.2012.05.009

    Article  Google Scholar 

  • Ojo O, Brook N (1990) The effect of moisture on some mechanical properties of rock. Min Sci Technol 10(2):145–156. doi:10.1016/0167-9031(90)90158-O

    Article  Google Scholar 

  • Reinhardt HW, Mielich O (2014) Fracture toughness of alkali-sensitive rocks in alkaline solution. Int J Rock Mech Min Sci 70:552–558. doi:10.1016/j.ijrmms.2014.06.014

    Google Scholar 

  • Saito T (1981) Variation of physical properties of igneous rock in weathering. In: Proceedings of international symposium on weak rock, Tokyo, vol 1. pp 191–196

  • Sharma PK, Singh TN (2006) Effect of saline water on strength and durability of granite rock-a case study. Indian Min Eng J 8(3):20–26

    Google Scholar 

  • Shukla R, Ranjith PG, Choi SK, Haque A, Yellishetty M, Hong L (2013) Mechanical behaviour of reservoir rock under brine saturation. Rock Mech Rock Eng 46:83–93. doi:10.1007/s00603-012-0246-x

    Article  Google Scholar 

  • Sih G (1974) Strain–energy–density factor applied to mixed mode crack problems. Int J Fract 10(3):305–321. doi:10.1007/BF00035493

    Article  Google Scholar 

  • Utagawa M, Seto M, Kosugi M, Katsuyama K, Matsui K (1999) The evaluation of fracture toughness of rock in wet and chemical condition. In: Proceedings of 1999 Japan–Korea joint symposium on rock engineering. pp 573–578

  • Vásárhelyi B (2005) Statistical analysis of the influence of water content on the strength of Miocene limestone. Rock Mech Rock Eng 38(1):69–76. doi:10.1007/s00603-004-0034-3

    Article  Google Scholar 

  • Vàsàrhelyi B, Van P (2006) Influence of water content on the strength of rock. Eng Geol 84:70–74. doi:10.1016/j.enggeo.2005.11.011

    Article  Google Scholar 

  • Vishal V, Ranjith PG, Singh TN (2015) An experimental investigation on behaviour of coal under fluid saturation, using acoustic emission. J Nat Gas Sci Eng 22:428–436. doi:10.1016/j.jngse.2014.12.020

    Article  Google Scholar 

  • Wong LNY, Maruvanchery V, Liu G (2015) Water effects on rock strength and stiffness degradation. Acta Geotech 11(4):713–737. doi:10.1007/s11440-015-0407-7

    Article  Google Scholar 

  • Xian-biao M, Lian-ying Z, Tian-zhen L, Hai-shun L (2009) Properties of failure mode and thermal damage for limestone at high temperature. Min Sci Technol 19(3):290–294. doi:10.1016/S1674-5264(09)60054-5

    Google Scholar 

  • Zhang ZX (2002) An empirical relation between mode I fracture toughness and the tensile strength of rock. Int J Rock Mech Min Sci 39(3):401–406. doi:10.1016/S1365-1609(02)00032-1

    Article  Google Scholar 

  • Zhixi C, Mian C, Yan J, Rongzun H (1997) Determination of rock fracture toughness and its relationship with acoustic velocity. Int J Rock Mech Min Sci 34(3–4):49. doi:10.1016/S1365-1609(97)00148-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Guha Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guha Roy, D., Singh, T.N., Kodikara, J. et al. Effect of Water Saturation on the Fracture and Mechanical Properties of Sedimentary Rocks. Rock Mech Rock Eng 50, 2585–2600 (2017). https://doi.org/10.1007/s00603-017-1253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1253-8

Keywords

Navigation