Rock Mechanics and Rock Engineering

, Volume 50, Issue 10, pp 2645–2657 | Cite as

Experimental Study of S-wave Propagation Through a Filled Rock Joint

  • Tingting Liu
  • Jianchun Li
  • Haibo Li
  • Xinping Li
  • Yun Zheng
  • Hui Liu
Original Paper
  • 407 Downloads

Abstract

This experimental study proposes a Split Shear Plates model to investigate the effects of a filled joint on S-wave attenuation. A dynamic impact is used to create frictional slip and generate an incident S-wave. The filled joint is simulated using a sand layer between two rock plates. Normal stress is applied to the filled joint, and semiconductor strain gauges are arranged on the two plates to measure the strain. Verification tests are conducted to validate the reliability of the experimental results. A series of tests is performed to investigate the influence of the normal stress, filled thickness and particle size of the filling materials on the S-wave propagation. The transmission coefficients of the filled joints are smaller than those of the non-filled joints because of the attenuation associated with the filling materials. Additionally, the transmission coefficients exhibit a stronger correlation with the normal stress than with the filled thickness or particle size. The transmission coefficients increase at a decreasing rate as normal pressure increases.

Keywords

Wave propagation S-wave Filled joint Transmission coefficient Normal stress 

Notes

Acknowledgements

The authors acknowledge the anonymous reviewers and the editor for their valuable comments and suggestions. This paper has received financial support from the National Natural Science Foundation of China (Grant Nos. 41525009, 51609183) and the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences (Grant No. Z015005).

References

  1. Barton N (2013) Shear strength criteria for rock, rock joints, rockfill and rock masses: problems and some solutions. J Rock Mech Geotech Eng 5:249–261. doi: 10.1016/j.jrmge.2013.05.008 CrossRefGoogle Scholar
  2. Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech Rock Eng 10:1–54CrossRefGoogle Scholar
  3. Chopra S, Kumar D, Rastogi BK (2011) Attenuation of high frequency P and S waves in the Gujarat region, India. Pure Appl Geophys 168:797–813. doi: 10.1007/s00024-010-0143-8 CrossRefGoogle Scholar
  4. De Toledo PE, De Freitas MH (1993) Laboratory testing and parameters controlling the shear strength of filled rock joints. Geotechnique 43:1–19. doi: 10.1680/geot.1993.43.1.1 CrossRefGoogle Scholar
  5. Fan LF, Ren F, Ma GW (2012) Experimental study on viscoelastic behavior of sedimentary rock under dynamic loading. Rock Mech Rock Eng 45:433–438. doi: 10.1007/s00603-011-0197-7 CrossRefGoogle Scholar
  6. Fratta D, Santamarina JC (2002) Shear wave propagation in jointed rock: state of stress. Geotechnique 52:495–505. doi: 10.1680/geot.2002.52.7.495 CrossRefGoogle Scholar
  7. Gui YL, Zhao ZY, Zhou HY, Wu W (2016) Numerical simulation of P-wave propagation in rock mass with granular material-filled fractures using hybrid continuum-discrete element method. Rock Mech Rock Eng 49:4049–4060. doi: 10.1007/s00603-016-0991-3 CrossRefGoogle Scholar
  8. Hao H, Wu Y, Ma G, Zhou Y (2001) Characteristics of surface ground motions induced by blasts in jointed rock mass. Soil Dyn Earthq Eng 21:85–98. doi: 10.1016/S0267-7261(00)00104-4 CrossRefGoogle Scholar
  9. Huang X, Qi S, Guo S, Dong W (2014) Experimental study of ultrasonic waves propagating through a rock mass with a single joint and multiple parallel joints. Rock Mech Rock Eng 47:549–559. doi: 10.1007/s00603-013-0399-2 CrossRefGoogle Scholar
  10. Indraratna B, Oliveira DAF, Brown ET (2010) A shear-displacement criterion for soil-infilled rock discontinuities. Géotechnique 60:623–633. doi: 10.1680/geot.8.P.094 CrossRefGoogle Scholar
  11. Kahraman S (2002) The effects of fracture roughness on P-wave velocity. Eng Geol 63:347–350. doi: 10.1016/S0013-7952(01)00089-8 CrossRefGoogle Scholar
  12. Kurtuluş C, Üçkardeş M, Sarı U, Güner ŞO (2012) Experimental studies in wave propagation across a jointed rock mass. Bull Eng Geol Environ 71:231–234CrossRefGoogle Scholar
  13. Li JC (2013) Wave propagation across non-linear rock joints based on time-domain recursive method. Geophys J Int 193:970–985. doi: 10.1093/gji/ggt020 CrossRefGoogle Scholar
  14. Li JC, Ma GW (2009) Experimental study of stress wave propagation across a filled rock joint. Int J Rock Mech Min Sci 46:471–478. doi: 10.1016/j.ijrmms.2008.11.006 CrossRefGoogle Scholar
  15. Li JC, Wu W, Li HB, Zhu JB, Zhao J (2013) A thin-layer interface model for wave propagation through filled rock joints. J Appl Geophys 91:31–38. doi: 10.1016/j.jappgeo.2013.02.003 CrossRefGoogle Scholar
  16. Meng H, Li QM (2003) An SHPB set-up with reduced time-shift and pressure bar length. Int J Implant Eng 28:677–696. doi: 10.1016/S0734-743X(02)00124-0 CrossRefGoogle Scholar
  17. Mohd-Nordin MM, Song K, Cho G, Mohamed Z (2014) Long-wavelength elastic wave propagation across naturally fractured rock masses. Rock Mech Rock Eng 47:561–573. doi: 10.1007/s00603-013-0448-x CrossRefGoogle Scholar
  18. Perino A, Barla G (2015) Resonant column apparatus tests on intact and jointed rock specimens with numerical modelling validation. Rock Mech Rock Eng 48:197–211. doi: 10.1007/s00603-014-0564-2 CrossRefGoogle Scholar
  19. Perry CC (1969) Plane-shear measurement with strain gages. Exp Mech 9:19N–22N. doi: 10.1007/BF02327879 CrossRefGoogle Scholar
  20. Pyrak-Nolte LJ, Myer LR, Cook NGW (1990) Anisotropy in seismic velocities and amplitudes from multiple parallel fractures. J Geophys Res 95:11345–11358. doi: 10.1029/JB095iB07p11345 CrossRefGoogle Scholar
  21. Sebastian R, Sitharam TG (2015) Long wavelength propagation of elastic waves across frictional and filled rock joints with different orientations: experimental results. Geotech Geol Eng 33:923–934. doi: 10.1007/s10706-015-9874-8 CrossRefGoogle Scholar
  22. Tripathi JN, Singh P, Sharma ML (2014) Attenuation of high-frequency P and S waves in Garhwal Himalaya, India. Tectonophysics 636:216–227. doi: 10.1016/j.tecto.2014.08.015 CrossRefGoogle Scholar
  23. Wu W, Zhao J (2014) A dynamic-induced direct-shear model for dynamic triggering of frictional slip on simulated granular gouges. Exp Mech 54:605–613. doi: 10.1007/s11340-013-9823-5 CrossRefGoogle Scholar
  24. Wu W, Zhu JB, Zhao J (2013) Dynamic response of a rock fracture filled with viscoelastic materials. Eng Geol 160:1–7. doi: 10.1016/j.enggeo.2013.03.022 CrossRefGoogle Scholar
  25. Zhao H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45:1185–1202. doi: 10.1016/S0022-5096(96)00117-2 CrossRefGoogle Scholar
  26. Zhao J, Cai JG, Zhao XB, Li HB (2006) Experimental study of ultrasonic wave attenuation across parallel fractures. Geomech Geoeng 1:87–103. doi: 10.1080/17486020600834613 CrossRefGoogle Scholar
  27. Zhu JB, Perino A, Zhao GF, Barla G, Li JC, Ma GW, Zhao J (2011) Seismic response of a single and a set of filled joints of viscoelastic deformational behaviour. Geophys J Int 186:1315–1330. doi: 10.1111/j.1365-246X.2011.05110.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Tingting Liu
    • 1
    • 2
  • Jianchun Li
    • 2
  • Haibo Li
    • 2
  • Xinping Li
    • 1
  • Yun Zheng
    • 2
  • Hui Liu
    • 1
  1. 1.Key Laboratory of Roadway Bridge and Structure EngineeringWuhan University of TechnologyWuhanChina
  2. 2.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil MechanicsChinese Academy of SciencesWuhanChina

Personalised recommendations