Skip to main content
Log in

Effects of Heat Shock on the Dynamic Tensile Behavior of Granitic Rocks

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new experimental method for the characterization of the surface damage caused by a heat shock on a Brazilian disk test sample. Prior to mechanical testing with a Hopkinson Split Pressure bar device, the samples were subjected to heat shock by placing a flame torch at a fixed distance from the sample’s surface for periods of 10, 30, and 60 s. The sample surfaces were studied before and after the heat shock using optical microscopy and profilometry, and the images were analyzed to quantify the damage caused by the heat shock. The complexity of the surface crack patterns was quantified using fractal dimension of the crack patterns, which were used to explain the results of the mechanical testing. Even though the heat shock also causes damage below the surface which cannot be quantified from the optical images, the presented surface crack pattern analysis can give a reasonable estimate on the drop rate of the tension strength of the rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • American National Standards Institute (2002) Surface texture (surface roughness, waviness, and lay). The American Society of Mechanical Engineers, New York

    Google Scholar 

  • An R, Li Y, Dou Y, Liu D, Yang H, Gong Q (2006) Water-assisted drilling of microfluidic chambers inside silica glass with femtosecond laser pulses. Appl Phys A 83(1):27–29

    Article  Google Scholar 

  • Apostol M (2007) Strain rate and Temperature Dependence of the Compression Behavior of FCC and BCC Metals. Tampere University of Technology, Tampere

    Google Scholar 

  • Bauer S, Johnson B (1979) Effects of slow uniform heating on the physical properties of the westerly and charcoal granites. Austin, s.n.

  • Bieniawski ZT, Bernede M (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: part 1. Suggested method for determining deformability of rock materials in uniaxial compression. Int J Rock Mech Min Sci Abstr 1(2):138–140

    Article  Google Scholar 

  • Blunt L, Jiang X (2003) Advanced techniques for assessment surface topography. Kogan Page Science, London

    Google Scholar 

  • Brown W, Parsons I (1989) Alkali feldspars: ordering rates, phase transformation and behaviour diagrams for igneous rocks. Mineral Mag 53:25–42

    Article  Google Scholar 

  • Cai M, Kaiser P (2004) Numerical simulation of the Brazilian test and the tensile strength of anisotropic rock and rock with pre-existing cracks. Int J Rock Mech Min Sci 41:478–483

    Article  Google Scholar 

  • Chau K, Wang P (1996) Microcracking and grain size effect in Yuen long marbles. Int J Rock Mech Min Sci Abstr 33(5):479–485

    Article  Google Scholar 

  • Dai F, Xia K (2010) Loading rate dependence of tensile strength anisotropy of Barre granite. Pure appl Geophys 167(11):1419–1432

    Article  Google Scholar 

  • Dai F, Huang S, Xia K (2010) Some fundamental issues in dynamic compression and tensile tests of rock using Split Hopkinson Pressure Bar. Rock Mech Rock Eng 43(6):657–666

    Article  Google Scholar 

  • Dunn D, LaFountain L, Jackson R (1973) Porosity dependence and mechanism of brittle fracture in sandstones. J Geophys Res 78(14):2403–2417

    Article  Google Scholar 

  • Dwivedi R, Goel R, Prasad V, Sinha A (2008) Thermo-mechanical properties of Indian and other granites. Int J Rock Mech Min Sci 45(3):303–315

    Article  Google Scholar 

  • Eberhardt E, Stimpson B, Stead D (1999) Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mech Rock Eng 32(2):81–99

    Article  Google Scholar 

  • Fair JC (1981) Development of high-pressure abrasive-jet drilling. J Petrol Technol 33(08):1–11

    Article  Google Scholar 

  • Feder J (1988) Fractals (physics of solids and liquids). Plenum Press, New York

    Google Scholar 

  • Fourmeau M, Gomon D, Vacher R, Hokka M, kane A, Kuokkala VT, (2014) Application of DIC technique for studies of Kuru granite rock under static and dynamic loading. Trondheim Procedia Mater Sci 3:691–697

    Article  Google Scholar 

  • Gasparik T (2003) Phase diagrams for geoscientists: an atlas of the earth’s interior, 1st edn. Springer, New York

    Book  Google Scholar 

  • Gorham DA, Wu X (1997) An empirical method of dispersion correction in the compressive Hopkinson bar test. J Phys IV 7:223–228

    Google Scholar 

  • Gorsevski P, Onasch C, Farver J, Ye X (2012) Detecting grain boundaries in deformed rocks using a cellular automata approach. Comput Geosci 42:136–142

    Article  Google Scholar 

  • Hawkes M, Mellor M (1978) Experimental rock deformation—the brittle field. Springer, Berlin

    Google Scholar 

  • Hudson J, Brown E, Rummel F (1972) The controlled failure of rock discs and rings loaded in diametral compression. Int J Rock Mech Min Sci Abstr 9(2):241–248

    Article  Google Scholar 

  • Khair A, Achanti A (1996) Effect of specimen size on compressive strength of coal. Golden, Colorado School of Mines

  • Kolle JJ, Otta R, Stang D (1991) Laboratory and field testing of an ultra-high-pressure, jet-assisted drilling system. Amsterdam, Society of Petroleum Engineers

  • Kranz R (1983) Microcracks in rocks: a review. Tectonophysics 100(1–3):449–480

    Article  Google Scholar 

  • Lasalmonie A, Strudel JL (1986) Influence of grain size on the mechanical behaviour of some high strength materials. Mater Sci 21(6):1837–1852

    Article  Google Scholar 

  • Lindroth D, Morrell R, Blair J (1991) Microwave assisted hard rock cutting. United States of America, Patent No. 5,033,144

  • Liu S, Xu J (2014) Mechanical properties of Qinling biotite granite after high temperature treatment. Int J Rock Mech Min Sci 71:188–193

    Google Scholar 

  • Luodes H, Luodes N (20159 Mechanical and physical properties [Online]. http://www.finskastone.fi/images/docs/Finska_Balmoral_Red_fine_grained_2007.pdf

  • Ma J, Wang H, Weng L, Tan G (2004) Effect of porous interlayers on crack deflection in ceramic laminates. J Eur Ceram Soc 24(5):825–831

    Article  Google Scholar 

  • Mahanta B, Singh T, Ranjoth P (2016) Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol 210:103–114

    Article  Google Scholar 

  • Mardoukhi A, Saksala T, Hokka M, Kuokkala VT (2015) An experimental and numerical study of the dynamic Brazilian disc test on Kuru granite. Tampere, Finnish association for structural mechanics

  • Miller D, Ball A (1990) Rock drilling with impregnated diamond microbits—an experimental study. Int J Rock Mech Min Sci Abstr 27(5):363–371

    Article  Google Scholar 

  • Perry K, Salehi I, Abbasi H (2010) Laser assisted drilling. United States of America, Patent No. US 2010/0078414 A1

  • Price N (1996) Fault and joint development in brittle and semi-brittle rocks. Pergamon Press, Oxford

    Google Scholar 

  • Rao QH, Wang Z, Xie HF, Xie Q (2007) Experimental study of mechanical properties of sandstone at high temperatures. J Cent South Univ Technol 14:478–483

    Article  Google Scholar 

  • Rippa F, Vinale F (1983) Structure and mechanical behavior of a volcanic tuff. International Society for Rock Mechanics, Melbourne

    Google Scholar 

  • Roy D, Singh T (2016) Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition. Rock Mech Rock Eng 49(5):1663–1677

    Article  Google Scholar 

  • Saksala T, Gomon D, Hokka M, Kuokkala VT (2014) Numerical and experimental study of percussive drilling with a triple-button on Kuru granite. Int J Impact Eng 72:56–66

    Article  Google Scholar 

  • Saksala T, Brancherie D, Ibrahimbegovic A (2016) Numerical modeling of dynamic rock fracture with a combined 3D continuum viscodamage-embedded discontinuity model. Int J Numer Anal Met 40(9):1339–1357

    Article  Google Scholar 

  • Sengun N (2014) Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arab J Geosci 7(12):5543–5551

    Article  Google Scholar 

  • Shewmon P, Zackay V (1961) Response of metals to high velocity deformation. Interscience Publishers Inc, New York

    Google Scholar 

  • Sirdesai NN, Singh TN, Ranjith PG, Singh R (2016) Effect of varied durations of thermal treatment on the tensile strength of Red Sandstone. Rock Mech Rock Eng 50(1):205–213

    Article  Google Scholar 

  • Smorodinov M, Motovilov E, Volkov V (1970) Determinations of correlation relationships between strength and some physical characteristics of rocks. International Society for Rock Mechanics, Belgrade

    Google Scholar 

  • Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements. Springer, New York

    Google Scholar 

  • Tkalich D, Fourmeau M, Kane A, Cailletaud CLG (2016) Experimental and numerical study of Kuru granite under confined compression and indentation. Int J Rock Mech Min Sci 87:55–68

    Google Scholar 

  • Veenhuizen S, O’Hanlon T, Kelley D, Aslakson J (1996) Ultra-high pressure down hole pump for jet-assisted drilling. Society of Petroleum Engineers, New Orleans

    Book  Google Scholar 

  • Verma AK, Jha MK, Maheshwar S, Singh TN, Bajpai RK (2016) Temperature-dependent thermophysical properties of Ganurgarh shales from Bhander group, India. Environ Earth Sci 75(4):1–11

    Article  Google Scholar 

  • Vishal V, Pradhan SP, Singh TN (2011) Tensile strength of rock under elevated temperatures. Geotech Geol Eng 29:1127–1133

    Article  Google Scholar 

  • Wenk H, Christie J (1991) Comments on the interpretation of deformation textures in rocks. J Struct Geol 13(10):1091–1110

    Article  Google Scholar 

  • Xia K, Yao W (2015) Dynamic rock tests using split Hopkinson (Kolsky) bar system—a review. J Rock Mech Geotec Eng 7(1):27–59

    Article  Google Scholar 

  • Yin T, Li X, Cao W, Xia K (2015) Effects of thermal treatment on tensile strength of Laurentian granite using Brazilian test. Rock Mech Rock Eng 48(6):2213–2223

    Article  Google Scholar 

  • Zhang Q, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Suomen Luonnonvarain Tutkimussäätiö—Foundation under Grant Numbers 1768/14, 1779/15, and 1789/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mardoukhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardoukhi, A., Mardoukhi, Y., Hokka, M. et al. Effects of Heat Shock on the Dynamic Tensile Behavior of Granitic Rocks. Rock Mech Rock Eng 50, 1171–1182 (2017). https://doi.org/10.1007/s00603-017-1168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1168-4

Keywords

Navigation