Rock Mechanics and Rock Engineering

, Volume 50, Issue 6, pp 1611–1659 | Cite as

High-Speed Photography and Digital Optical Measurement Techniques for Geomaterials: Fundamentals and Applications

  • H. Z. Xing
  • Q. B. ZhangEmail author
  • C. H. Braithwaite
  • B. Pan
  • J. Zhao
Review Paper


Geomaterials (i.e. rock, sand, soil and concrete) are increasingly being encountered and used in extreme environments, in terms of the pressure magnitude and the loading rate. Advancing the understanding of the mechanical response of materials to impact loading relies heavily on having suitable high-speed diagnostics. One such diagnostic is high-speed photography, which combined with a variety of digital optical measurement techniques can provide detailed insights into phenomena including fracture, impact, fragmentation and penetration in geological materials. This review begins with a brief history of high-speed imaging. Section 2 discusses of the current state of the art of high-speed cameras, which includes a comparison between charge-coupled device and complementary metal-oxide semiconductor sensors. The application of high-speed photography to geomechanical experiments is summarized in Sect. 3. Section 4 is concerned with digital optical measurement techniques including photoelastic coating, Moiré, caustics, holographic interferometry, particle image velocimetry, digital image correlation and infrared thermography, in combination with high-speed photography to capture transient phenomena. The last section provides a brief summary and discussion of future directions in the field.


High-speed photography Digital optical measurement Dynamic loading High strain rate Fracturing 



This work was supported by the Australian Research Council (LE150100058) and Engineering Seed Funding Scheme of Monash University. The first author would like to acknowledge the financial support by the China Scholarship Council. The authors would like to appreciate the help and support by a number of colleagues who sharing their knowledge and resources during the preparation of this review. Special acknowledgements are given to Mrs Haiying Bian (editorial office of Geomechanics and Geoengineering—An International Journal) and Dr. Philip Reu who provided English editing and survey of current high-speed cameras for this review, respectively.


  1. Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304CrossRefGoogle Scholar
  2. Allen WA, Mayfield EB, Morrison HL (1957) Dynamics of a projectile penetrating sand. J Appl Phys 28:370–376. doi: 10.1063/1.1722750 CrossRefGoogle Scholar
  3. Amidror I, Amidror I, Amidror I, Amidror I (2000) The theory of the moiré phenomenon vol 38. vol LSP-BOOK-2000-001. Springer, Boston. doi: 10.1007/978-1-84882-181-1
  4. Anastasi RF (1992) An introduction to Moire methods with applications in composite materials. Army Lab Command Watertown MA Material Technology LabGoogle Scholar
  5. Anderson J, Schultz P, Heineck J (2000) A new view of ejecta curtains during oblique impacts using 3D particle imaging velocimetry. Paper presented at the Lunar and planetary science and exploration, WashingtonGoogle Scholar
  6. Anderson JL, Schultz PH, Heineck JT (2003) Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry. J Geophys Res Planets 108(E8):5094. doi: 10.1029/2003JE002075 CrossRefGoogle Scholar
  7. Arakawa K, Drinnon R Jr, Kosai M, Kobayashi A (1991) Dynamic fracture analysis by moiré interferometry. Exp Mech 31:306–309. doi: 10.1007/BF02325986 CrossRefGoogle Scholar
  8. Arbiter N, Harris C, Stamboltzis G (1969) Single fracture of brittle spheres. Trans AIME 244:118–133Google Scholar
  9. Avril S et al (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402. doi: 10.1007/s11340-008-9148-y CrossRefGoogle Scholar
  10. Ayatollahi M, Torabi A, Firoozabadi M (2015) Theoretical and experimental investigation of brittle fracture in V-notched PMMA specimens under compressive loading. Eng Fract Mech 135:187–205. doi: 10.1016/j.engfracmech.2015.01.005 CrossRefGoogle Scholar
  11. Bagnold RA (1941) The physics of wind blown sand and desert dunes. Methuen, LondonGoogle Scholar
  12. Bagnold RA (2012) The physics of blown sand and desert dunes. Courier Corporation, New York. doi: 10.1007/978-94-009-5682-7 Google Scholar
  13. Barla G (1972) Stresses around a single underground opening near a traction-free surface. Int J Rock Mech Min Sci Geomech Abstr 9:103–126. doi: 10.1016/0148-9062(72)90052-6 CrossRefGoogle Scholar
  14. Barla G, Boshkov SH (1969) Two-dimensional photoelastic analysis of gravity-loaded rock structures using gelatin mixture models. Trans Am Inst Min Metall Eng 244:99–115Google Scholar
  15. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226. doi: 10.1007/BF02323555 CrossRefGoogle Scholar
  16. Beberniss T, Spottswood M, Eason T (2011) High-speed digital image correlation measurements of random nonlinear dynamic response. In: Experimental and applied mechanics, vol 6. Springer, Berlin, pp 171–186. doi: 10.1007/978-1-4614-0222-0_22
  17. Beberniss T, Eason T, Spottswood S (2012) High-speed 3D digital image correlation measurements of long-duration random vibration; recent advancements and noted limitations. In: Proceedings, international conference on noise and vibration engineering (ISMA), Katholieke Universiteit Leuven, Belgium (2012)Google Scholar
  18. Berfield T, Patel J, Shimmin R, Braun P, Lambros J, Sottos N (2007) Micro-and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp Mech 47:51–62. doi: 10.1007/s11340-006-0531-2 CrossRefGoogle Scholar
  19. Bieniawski ZT (1967a) Mechanism of brittle fracture of rock: part I—theory of the fracture process. Int J Rock Mech Min Sci Geomech Abst 4:395IN11405–11404IN12406. doi: 10.1016/0148-9062(67)90030-7
  20. Bieniawski ZT (1967b) Mechanism of brittle fracture of rock: Part II—experimental studies. Int J Rock Mech Min Sci Geomech Abstr 4:407–423. doi: 10.1016/0148-9062(67)90031-9 CrossRefGoogle Scholar
  21. Bieniawski ZT (1968) Fracture dynamics of rock. Int J Fract 4:415–430. doi: 10.1007/bf00186807 CrossRefGoogle Scholar
  22. Blair BE (1960) Use of high-speed camera in blasting studies, vol 5584. US Dept. of the Interior, Bureau of Mines, USAGoogle Scholar
  23. Borg J, Morrissey M, Perich C, Vogler T, Chhabildas L (2013) In situ velocity and stress characterization of a projectile penetrating a sand target: experimental measurements and continuum simulations. Int J Impact Eng 51:23–35. doi: 10.1016/j.ijimpeng.2012.07.009 CrossRefGoogle Scholar
  24. Borvik T, Gjorv OE, Langseth M (2007) Ballistic perforation resistance of high-strength concrete slabs. Concrete Int Detroit Am Concr Inst 29:45Google Scholar
  25. Bourne N (2013) Materials in mechanical extremes: fundamentals and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Bowden F, McOnie M (1967) Formation of cavities and microjets in liquids and their role in initiation and growth of explosion. Proc R Soc Lond A Math Phys Eng Sci 1452:38–50CrossRefGoogle Scholar
  27. Boys C (1892) On electric spark photography; or photography of flying bullets, and so on, by the light of the electric spark. Nature 3:415Google Scholar
  28. Braithwaite C (2009) High strain rate properties of geological materials. University of Cambridge, CambridgeGoogle Scholar
  29. Brajer X, Forquin P, Gy R, Hild F (2003) The role of surface and volume defects in the fracture of glass under quasi-static and dynamic loadings. J Non-Cryst Solids 316:42–53. doi: 10.1016/S0022-3093(02)01936-1 CrossRefGoogle Scholar
  30. Bramson MA (1968) Infrared radiation. A handbook for applications optical physics and engineering. Plenum Press, New YorkGoogle Scholar
  31. Brara A, Klepaczko JR (2006) Experimental characterization of concrete in dynamic tension. Mech Mater 38:253–267. doi: 10.1016/j.mechmat.2005.06.004 CrossRefGoogle Scholar
  32. Brara A, Camborde F, Klepaczko J, Mariotti C (2001) Experimental and numerical study of concrete at high strain rates in tension. Mech Mater 33:33–45. doi: 10.1016/S0167-6636(00)00035-1 CrossRefGoogle Scholar
  33. Braslau D (1970) Partitioning of energy in hypervelocity impact against loose sand targets. J Geophys Res 75:3987–3999. doi: 10.1029/JB075i020p03987 CrossRefGoogle Scholar
  34. Brewster D (1816) On the communication of the structure of doubly refracting crystals to glass, muriate of soda, fluor spar, and other substances, by mechanical compression and dilatation. Philos Trans R Soc Lond 106:156–178CrossRefGoogle Scholar
  35. Cai M, Kaiser P, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute-Marne argillite. Phys Chem Earth Parts A/B/C 32:907–916CrossRefGoogle Scholar
  36. Caverzan A, Peroni M, Solomos G (2016) Compressive behaviour of dam concrete at higher strain rates. Eur Phys J Special Topics 1–11. doi: 10.1140/epjst/e2016-02628-5
  37. Chen R, Xia K, Dai F, Lu F, Luo S (2009) Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech 76:1268–1276. doi: 10.1016/j.engfracmech.2009.02.001 CrossRefGoogle Scholar
  38. Chen J, Guo B, Liu H, Liu H, Chen P (2014a) Dynamic Brazilian test of brittle materials using the split Hopkinson pressure bar and digital image correlation. Strain 50:563–570. doi: 10.1111/str.12118 CrossRefGoogle Scholar
  39. Chen Z, Omidvar M, Iskander M, Bless S (2014b) Modelling of projectile penetration using transparent soils. Int J Phys Modell Geotech 14:68–79CrossRefGoogle Scholar
  40. Chia Y, Tong J, Tou C (1984) A study of dynamic holographic photoelasticity using ruby laser. Can Soc Mech Eng Trans 8:117–120Google Scholar
  41. Cho SH, Ogata Y, Kaneko K (2003) Strain-rate dependency of the dynamic tensile strength of rock. Int J Rock Mech Min Sci 40:763–777CrossRefGoogle Scholar
  42. Chu T, Ranson W, Sutton M (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25:232–244. doi: 10.1007/BF02325092 CrossRefGoogle Scholar
  43. Cintala MJ, Berthoud L, Hörz F (1999) Ejection-velocity distributions from impacts into coarse-grained sand. Meteorit Planet Sci 34:605–623. doi: 10.1111/j.1945-5100.1999.tb01367.x CrossRefGoogle Scholar
  44. Cole RP (2010) Ballistic penetration of a sandbagged redoubt using silica sand and pulverized rubber of various grain sizes. University of South Florida, TambaGoogle Scholar
  45. Coleman KR (1959) The photography of high temperature events. In: Proceedings of 4th international Kongress Kurzzeitphotographie. pp 32–39Google Scholar
  46. Collins A, Addiss J, Walley S, Promratana K, Bobaru F, Proud W, Williamson D (2011) The effect of rod nose shape on the internal flow fields during the ballistic penetration of sand. Int J Impact Eng 38:951–963CrossRefGoogle Scholar
  47. Company C (2012a) high speed rotating mirror ccd camera Model 560.
  48. Company C (2012b) High speed rotating mirror ccd camera Model 580.
  49. Company S Shimadzu ultra-high speed camera HPV-2.
  50. Costin L, Crisman E, Hawley R, Duffy J (1980) On the localisation of plastic flow in mild steel tubes under dynamic torsional loading. In: Proceedings 2nd conference mechanical properties of materials at high rates of strain, Oxford, England, Mar. 1979, pp 90–100Google Scholar
  51. Courtney-Pratt JS (1949) Photography of fast transients. Interferometric Study of Surfaces. University of Cambridge, CambridgeGoogle Scholar
  52. Courtney-Pratt J (1957) A review of the methods of high-speed photography. Rep Progr Phys 20:379CrossRefGoogle Scholar
  53. Courtney-Pratt J (1973) Advances in high-speed photography 1957–1972, vols 82, 108. Springer, Netherlands, pp 595–607. doi: 10.1007/978-94-017-0445-8_21
  54. Courtney-Pratt J (1986) Advances in high-speed photography: 1972–1982. In: Fast electrical and optical measurements. Springer, Berlin, pp 595–607. doi: 10.1007/978-94-017-0445-8_21
  55. Cranz C, Schardin H (1929) Kinematographie auf ruhendem Film und mit extrem hoher. Bildfrequenz Zeitschrift für Physik 56:147–183. doi: 10.1007/BF01342777 CrossRefGoogle Scholar
  56. Crooks J, Marsh B, Turchetta R, Taylor K, Chan W, Lahav A, Fenigstein A (2013) Ultra-high speed imaging at megaframes per second with a megapixel CMOS image sensor. In: Proceedings of international image sensor workshop, 2013, pp 369–372Google Scholar
  57. Crump D, Dulieu-Barton J, Fruehmann R (2011) Challenges in synchronising high speed full-field temperature and strain measurement. In: Thermomechanics and infra-red imaging, vol 7. Springer, Berlin, pp 1–7. doi: 10.1007/978-1-4614-0207-7_1
  58. Culp FL, Hooper HL (1961) Study of impact cratering in sand. J Appl Phys 32:2480–2484. doi: 10.1063/1.1777095 CrossRefGoogle Scholar
  59. Daehnke A (1999) Stress wave and fracture propagation in rock. In: 9th ISRM Congress, 1999. International Society for Rock MechanicsGoogle Scholar
  60. Dai F, Chen R, Xia K (2010) A semi-circular bend technique for determining dynamic fracture toughness. Exp Mech 50:783–791. doi: 10.1007/s11340-009-9273-2 CrossRefGoogle Scholar
  61. Daniel I, Rowlands RE (1975) On wave and fracture propagation in rock media. Exp Mech 15:449–457. doi: 10.1007/BF02318359 CrossRefGoogle Scholar
  62. De Ploey J, Savat J (1968) Contribution a l’étude de l’érosion par le splash. Zeitschrift für Geomorphologie 12:174–193Google Scholar
  63. Dear J, Field J (1988) High-speed photography of surface geometry effects in liquid/solid impact. J Appl Phys 63:1015–1021. doi: 10.1063/1.340000 CrossRefGoogle Scholar
  64. Denoual C, Cottenot CE (1998) Visualization of the damage evolution in impacted silicon carbide ceramics. Int J Impact Eng 21:225–235. doi: 10.1016/S0734-743X(97)00018-3 CrossRefGoogle Scholar
  65. Descoeudres A, Hollenstein C, Wälder G, Perez R (2005) Time-resolved imaging and spatially-resolved spectroscopy of electrical discharge machining plasma. J Phys D Appl Phys 38:4066. doi: 10.1088/0022-3727 CrossRefGoogle Scholar
  66. Draxler VC (2005) High-speed diagnostics for ballistics and explosive studies. In: High-pressure shock compression of solids VIII. Springer, Berlin, pp 227–249. doi: 10.1007/3-540-27168-6_6
  67. Eastman G (1888) Camera, Patent US 388850 A. American PatentGoogle Scholar
  68. Edgerton HE, Killian JR (1954) Flash!: Seeing the unseen by ultra high-speed photography. CT Branford Co., MassachusettsGoogle Scholar
  69. Einstein HH, Meyer T (1999) Müller lecture: puzzles in rock. In: 9th ISRM Congress, 1999. International Society for Rock MechanicsGoogle Scholar
  70. Ellison W (1944) Studies of raindrop erosion. Agric Eng 25:131–136Google Scholar
  71. Epstein JS, Dadkhah MS (1993) Moiré interferometry in fracture research. In: Epstein JS (ed) Experimental techniques in fracture, Chap 11. VCH Publishers, New York, pp 427–508Google Scholar
  72. Etoh T (1992) High-speed video camera of 4,500 pps. Japan Television Association 46:543–545Google Scholar
  73. Etoh TG, Mutoh H (2005) An image sensor of 1 Mfps with photon counting sensitivity. In: 26th international congress on high-speed photography and photonics, 2005. International Society for Optics and Photonics, pp 301–307. doi: 10.1117/12.566170
  74. Etoh TG et al (2003) An image sensor which captures 100 consecutive frames at 1000000 frames/s. IEEE Trans Electron Dev 50:144–151. doi: 10.1109/TED.2002.806474 CrossRefGoogle Scholar
  75. Etoh TG et al (2007) Evolution of ultra-high-speed CCD imagers. Plasma Fusion Res 2:S1021–S1021. doi: 10.1585/pfr.2.S1021 CrossRefGoogle Scholar
  76. Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography—principles and applications. Rep Progr Phys 66:239. doi: 10.1088/0034-4885/66/2/204 CrossRefGoogle Scholar
  77. Field J (1983) High-speed photography. Contemp Phys 24:439–459. doi: 10.1080/00107518308210696 CrossRefGoogle Scholar
  78. Field J, Walley S, Proud W, Goldrein H, Siviour C (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30:725–775CrossRefGoogle Scholar
  79. Field J, Proud W, Walley S (2009) Review of optical and X-ray techniques used at the Cavendish Laboratory. Imaging Sci J 57:317–325CrossRefGoogle Scholar
  80. Fookes P (1991) Geomaterials. Q J Eng GeolHydrogeol 24:3–15CrossRefGoogle Scholar
  81. Forquin P (2017) Brittle materials at high-loading rates: an open area of research. Philos Trans R Soc A Math Phys Eng Sci. doi: 10.1098/rsta.2016.0436 Google Scholar
  82. Forsberg F, Mooser R, Arnold M, Hack E, Wyss P (2008) 3D micro-scale deformations of wood in bending: synchrotron radiation μCT data analyzed with digital volume correlation. J Struct Biol 164:255–262. doi: 10.1016/j.jsb.2008.08.004 CrossRefGoogle Scholar
  83. Foster M, Love B, Kaste R, Moy P (2015) The rate dependent tensile response of polycarbonate and poly-methylmethacrylate. J Dyn Behav Mater 1:162–175. doi: 10.1007/s40870-015-0020-8 CrossRefGoogle Scholar
  84. Fourmeau M, Gomon D, Vacher R, Hokka M, Kane A, Kuokkala V-T (2014) Application of DIC technique for studies of Kuru Granite rock under static and dynamic loading. Proc Mater Sci 3:691–697. doi: 10.1016/j.mspro.2014.06.114 CrossRefGoogle Scholar
  85. Fourney W, Holloway D, Dally J (1975) Fracture initiation and propagation from a center of dilatation. Int J Fract 11:1011–1029. doi: 10.1007/BF00033847 Google Scholar
  86. Fourney W, Dally J, Holloway D (1976) Attenuation of strain waves in core samples of three types of rock. Exp Mech 16:121–126CrossRefGoogle Scholar
  87. Fowler A, Scheu B, Lee W, McGuinness M (2009) A theoretical model of the explosive fragmentation of vesicular magma. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2009. The Royal Society, p rspa20090382Google Scholar
  88. Fruehmann R, Crump D, Dulieu-Barton J (2011) The use of infrared thermography at high frame rates. In: Thermomechanics and infra-red imaging, vol 7. Springer, Berlin, pp 9–15. doi: 10.1007/978-1-4614-0207-7_2
  89. Fruehmann R, Crump D, Dulieu-Barton J (2013) Characterization of an infrared detector for high frame rate thermography. Meas Sci Technol 24:105403CrossRefGoogle Scholar
  90. Fuller PWW (1994) Aspects of high speed photography. J Photogr Sci 42:42–43CrossRefGoogle Scholar
  91. Fuller PW (2005) Some highlights in the history of high-speed photography and photonics as applied to ballistics. In: High-pressure shock compression of solids VIII. Springer, Berlin, pp 251–298. doi: 10.1007/3-540-27168-6_7
  92. Fuller PWW (2009) An introduction to high speed photography and photonics The. Imaging Sci J 57:293–302. doi: 10.1179/136821909x12490326247524 CrossRefGoogle Scholar
  93. Furbish DJ, Hamner KK, Schmeeckle M, Borosund MN, Mudd SM (2007) Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets. J Geophys Res Earth Surf. doi: 10.1029/2006JF000498
  94. Gao G, Huang S, Xia K, Li Z (2015) Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests. Exp Mech 55:95–104. doi: 10.1007/s11340-014-9863-5 CrossRefGoogle Scholar
  95. Garbowski T, Gajewski T, Łodygowski T (2012) Identification of rate dependent material model parameters based on Split Hopkinson Pressure Bar test and high speed camera with Digital Image Correlation. Paper presented at the European Congress on Computational Methods in Applied Science and Engineering Vienna, AustriaGoogle Scholar
  96. Gault DE, Moore HJ, Shoemaker EM (1963) Spray ejected from the lunar surface by meteoroid impact. National Aeronautics and Space AdministrationGoogle Scholar
  97. Giachetti A (2000) Matching techniques to compute image motion. Image Vis Comput 18:247–260. doi: 10.1016/S0262-8856(99)00018-9 CrossRefGoogle Scholar
  98. Gilat A, Schmidt T, Walker A (2009) Full field strain measurement in compression and tensile split Hopkinson bar experiments. Exp Mech 49:291–302. doi: 10.1007/s11340-008-9157-x CrossRefGoogle Scholar
  99. Glenn L, Jaun H (1978) Crack propagation in rock plates loaded by projectile impact. Exp Mech 18:35–40. doi: 10.1007/BF02326555 CrossRefGoogle Scholar
  100. Gong M, Jia J, Wang D (2005) A review of studies on the blasting model by dynamic photomechanics. Blasting 22:7–12Google Scholar
  101. Grady D, Benson D (1983) Fragmentation of metal rings by electromagnetic loading. Exp Mech 23:393–400CrossRefGoogle Scholar
  102. Grady D, Kipp M (1979) The micromechanics of impact fracture of rock. Int J Rock Mech Min Sci Geomech Abstr 5:293–302. doi: 10.1016/0148-9062(79)90240-7 CrossRefGoogle Scholar
  103. Grange S, Forquin P, Mencacci S, Hild F (2008) On the dynamic fragmentation of two limestones using edge-on impact tests. Int J Impact Eng 35:977–991. doi: 10.1016/j.ijimpeng.2007.07.006 CrossRefGoogle Scholar
  104. Grattan KT, Meggitt B (1995) Optical fiber sensor technology, vols 1, 3. Springer, London. doi: 10.1007/978-1-4757-6077-4
  105. Greated C, Skyner D, Bruce T (1992) Particle image velocimetry (PIV) in the coastal engineering laboratory. In: Coastal engineering conference, 1992. ASCE, pp 212–212. doi: 10.1061/9780872629332.016
  106. Grogan J, Tekalur SA, Shukla A, Bogdanovich A, Coffelt RA (2007) Ballistic resistance of 2D and 3D woven sandwich composites, vol 9. Springer, Netherlands. doi: 10.1007/1-4020-3848-8_63
  107. Guduru P, Rosakis A, Ravichandran G (2001) Dynamic shear bands: an investigation using high speed optical and infrared diagnostics. Mech Mater 33:371–402. doi: 10.1016/S0167-6636(01)00051-5 CrossRefGoogle Scholar
  108. Guzman IL, Iskander M, Bless S (2015) Observations of projectile penetration into a transparent soil. Mech Res Commun 70:4–11. doi: 10.1016/j.mechrescom.2015.08.008 CrossRefGoogle Scholar
  109. Hall J, Barigou M, Simmons M, Stitt E (2005) A PIV study of hydrodynamics in gas–liquid high throughput experimentation (HTE) reactors with eccentric impeller configurations. Chem Eng Sci 60:6403–6413. doi: 10.1016/j.ces.2005.03.044 CrossRefGoogle Scholar
  110. Hariharan P, Oreb BF (1986) Stroboscopic holographic interferometry: application of digital techniques. Opt Commun 59:83–86CrossRefGoogle Scholar
  111. Hartley K, Duffy J, Hawley R (1987) Measurement of the temperature profile during shear band formation in steels deforming at high strain rates. J Mech Phys Solids 35:283–301. doi: 10.1016/0022-5096(87)90009-3 CrossRefGoogle Scholar
  112. Haug T, Kääb A, Skvarca P (2010) Monitoring ice shelf velocities from repeat MODIS and Landsat data—a method study on the Larsen C ice shelf, Antarctic Peninsula, and 10 other ice shelves around Antarctica. The Cryosphere 4:161–178. doi: 10.5194/tc-4-161-2010
  113. Held M (1987) Streak technique in detonics. In: 17th Int’l conference on high speed photography and photonics, 1987. International Society for Optics and Photonics, pp 421–443. doi: 10.1117/12.975571
  114. Heineck JT, Schultz PH, Anderson JLB (2002) Application of three-component PIV to the measurement of hypervelocity impact ejecta. J Visual 5(3):233–241. doi: 10.1007/BF03182331 CrossRefGoogle Scholar
  115. Hertegård S, Larsson H, Wittenberg T (2003) High-speed imaging: applications and development. Logopedics Phoniatr Vocol 28:133–139. doi: 10.1080/14015430310015246 CrossRefGoogle Scholar
  116. Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties—a review. Strain 42:69–80. doi: 10.1111/j.1475-1305.2006.00258.x CrossRefGoogle Scholar
  117. Hino K (1956) Velocity of rock fragments and shape of shock wave. J Ind Explos Society Jpn 17:2–36Google Scholar
  118. Hogan JD, Spray JG, Rogers RJ, Vincent G, Schneider M (2013a) Dynamic fragmentation of natural ceramic tiles: ejecta measurements and kinetic consequences. Int J Impact Eng 58:1–16. doi: 10.1016/j.ijimpeng.2013.02.007 CrossRefGoogle Scholar
  119. Hogan JD, Spray JG, Rogers RJ, Vincent G, Schneider M (2013b) Dynamic fragmentation of planetary materials: ejecta length quantification and semi-analytical modelling. Int J Impact Eng 62:219–228CrossRefGoogle Scholar
  120. Hogan J, Spray J, Rogers R, Vincent G, Schneider M (2014) Impact failure of planetary materials. Exp Mech 54:665–675CrossRefGoogle Scholar
  121. Holloway D, Patacca A, Fourney W (1978) Application of holographic interferometry to a study of wave propagation in rock: Exp mech, V17, N8, Aug 1977, P314–384. Int J Rock Mech Min Sci Geomech Abst. 2:A28. doi: 10.1016/0148-9062(78)91719-9
  122. Honour J (2009) A brief history of principles used in high speed cameras The. Imaging Sci J 57:303–316. doi: 10.1179/136821909x12490307953035 CrossRefGoogle Scholar
  123. Hornemann U, Rothenhausler H, Senf H, Kalthoff J, Winkler S (1984) Experimental investigation of wave and fracture propagation in glass slabs loaded by steel cylinders at high-impact velocities. In: Institute of Physics Conference Series, 1984, vol 70. Plenum Publ Corp, New York, pp 291–298Google Scholar
  124. Hu G, Ramesh K, Cao B, McCauley J (2011) The compressive failure of aluminum nitride considered as a model advanced ceramic. J Mech Phys Solids 59:1076–1093. doi: 10.1016/j.jmps.2011.02.003 CrossRefGoogle Scholar
  125. Huang S, Luo S, Xia K (2009) Dynamic fracture initiation toughness and propagation toughness of PMMA. In: Proceedings of the SEM annual conference, Albuquerque, 2009. pp 1–4Google Scholar
  126. Huang J et al (2016) Heterogeneity in deformation of granular ceramics under dynamic loading. Scripta Mater 111:114–118. doi: 10.1016/j.scriptamat.2015.08.028 CrossRefGoogle Scholar
  127. Huntley J, Field J (1989) High resolution moiré photography: application to dynamic stress analysis. Opt Eng 28:288926–288926. doi: 10.1117/12.7977058
  128. Huston A (1978) High-speed photography and photonic recording. J Phys E Sci Instrum 11:601. doi: 10.1088/0022-3735 CrossRefGoogle Scholar
  129. Ifju PG, Masters JE, Jackson WC (1995) The use of moiré interferometry as an aid to standard test-method development for textile composite materials. Compos Sci Technol 53:155–163. doi: 10.1016/0266-3538(95)00014-3 CrossRefGoogle Scholar
  130. Ilstad T, Elverhøi A, Issler D, Marr JG (2004a) Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking. Mar Geol 213:415–438CrossRefGoogle Scholar
  131. Ilstad T, Marr JG, Elverhøi A, Harbitz CB (2004b) Laboratory studies of subaqueous debris flows by measurements of pore-fluid pressure and total stress. Mar Geol 213:403–414. doi: 10.1016/j.margeo.2004.10.016 CrossRefGoogle Scholar
  132. Islam MT, Bindiganavile V (2012) Stress rate sensitivity of Paskapoo sandstone under flexure. Can J Civ Eng 39:1184–1192. doi: 10.1139/l2012-101 CrossRefGoogle Scholar
  133. ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci 15:99–103. doi: 10.1016/0148-9062(78)90003-7 CrossRefGoogle Scholar
  134. Jacquot P (2008) Speckle interferometry: a review of the principal methods in use for experimental mechanics applications. Strain 44:57–69. doi: 10.1111/j.1475-1305.2008.00372.x CrossRefGoogle Scholar
  135. Jiang C, Dong Z, Zhang Z (2015) Measurement of the movement parameters of saltating sand over a flat sand bed using a high-speed digital camera. Environ Earth Sci 74:4865–4874. doi: 10.1007/s12665-015-4490-8 CrossRefGoogle Scholar
  136. Jiang C, Zhao G-F, Zhu J, Zhao Y-X, Shen L (2016) Investigation of dynamic crack coalescence using a gypsum-like 3D printing material. Rock Mech Rock Eng 49:3983–3998. doi: 10.1007/s00603-016-0967-3 CrossRefGoogle Scholar
  137. Ju Y, Xie H, Zheng Z, Lu J, Mao L, Gao F, Peng R (2014) Visualization of the complex structure and stress field inside rock by means of 3D printing technology. Chin Sci Bull 59:5354–5365. doi: 10.1007/s11434-014-0579-9 CrossRefGoogle Scholar
  138. Jung W, Utagawa M, Ogata Y, Seto M, Katsuyama K, Miyake A, Ogawa T (2001) Effects of rock pressure on crack generation during tunnel blasting. J Japan Explos Soc 62:138–146Google Scholar
  139. Kekić G, Dojčinović IP (2003) Application of the digital imaging technique using IMACON 790 camera for compression plasma flows investigation. Sci Tech Rev 53:3–9Google Scholar
  140. Kimberley J, Ramesh K (2011) The dynamic strength of an ordinary chondrite. Meteorit Planet Sci 46:1653–1669. doi: 10.1111/j.1945-5100.2011.01254.x CrossRefGoogle Scholar
  141. Kirk S (2014) Shock compression and dynamic fragmentation of geological materials. University of Cambridge, CambridgeGoogle Scholar
  142. Kirugulige M, Tippur H (2009) Measurement of fracture parameters for a mixed-mode crack driven by stress waves using image correlation technique and high-speed digital photography. Strain 45:108–122. doi: 10.1111/j.1475-1305.2008.00449.x CrossRefGoogle Scholar
  143. Kiser T, Eigensatz M, Nguyen MM, Bompas P, Pauly M (2013) Architectural caustics—controlling light with geometry. Springer, London. doi: 10.1007/978-3-7091-1251-9_7
  144. Klepaczko J, Brara A (2001) An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng 25:387–409CrossRefGoogle Scholar
  145. Knauss W, Babcock C, Chai H (1980) Visualization of Impact Damage of Composite Plates by Means of the Moire Technique. DTIC DocumentGoogle Scholar
  146. Koerber H, Xavier J, Camanho P, Essa Y, de la Escalera FM (2015) High strain rate behaviour of 5-harness-satin weave fabric carbon–epoxy composite under compression and combined compression–shear loading. Int J Solids Struct 54:172–182. doi: 10.1016/j.ijsolstr.2014.10.018 CrossRefGoogle Scholar
  147. Kondo Y et al (2012) Development of “HyperVision HPV-X” high-speed video camera. Shimadzu Rev 69:285–291Google Scholar
  148. Koschatzky V, Moore P, Westerweel J, Scarano F, Boersma B (2011) High speed PIV applied to aerodynamic noise investigation. Exp Fluids 50:863–876. doi: 10.1007/s00348-010-0935-8 CrossRefGoogle Scholar
  149. Kubota S, Ogata Y, Wada Y, Simangunsong G, Shimada H, Matsui K (2008) Estimation of dynamic tensile strength of sandstone. Int J Rock Mech Min Sci 45:397–406. doi: 10.1016/j.ijrmms.2007.07.003 CrossRefGoogle Scholar
  150. Kutter H, Fairhurst C (1971) On the fracture process in blasting. Int J Rock Mech Min Sci Geomech Abstr 3:181–202CrossRefGoogle Scholar
  151. Lagarde A (2014) Static and dynamic photoelasticity and caustics: recent developments, vol 290. Springer, London. doi: 10.1007/978-3-7091-2630-1
  152. Lauterborn W, Hentschel W (1985) Cavitation bubble dynamics studied by high speed photography and holography: part one. Ultrasonics 23:260–268. doi: 10.1016/0041-624X(85)90048-4 CrossRefGoogle Scholar
  153. Lazovsky L, Cismas D, Allan G, Given D (2005) CCD sensor and camera for 100 Mfps burst frame rate image capture. In: Defense and Security, 2005. International Society for Optics and Photonics, pp 184–190. doi: 10.1117/12.604523
  154. Leith EN, Upatnieks J (1963) Wavefront reconstruction with continuous-tone objects. JOSA 53:1377–1381CrossRefGoogle Scholar
  155. Lenoir N, Bornert M, Desrues J, Bésuelle P, Viggiani G (2007) Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43:193–205. doi: 10.1111/j.1475-1305.2007.00348.x CrossRefGoogle Scholar
  156. Levy S, Molinari J-F (2010) Dynamic fragmentation of ceramics, signature of defects and scaling of fragment sizes. J Mech Phys Solids 58:12–26. doi: 10.1016/j.jmps.2009.09.002 CrossRefGoogle Scholar
  157. Li D, Wong LNY (2013) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng 46:269–287CrossRefGoogle Scholar
  158. Li Z, Jia X (2005) Research on X-ray sensitive ICCD image sensor. Opt Precis Eng 6:021Google Scholar
  159. Li Y, Yang Y, Yang R (1999) Study on effect of blasting in rock by laser holography. J China Univ Min Technol 28:322–325Google Scholar
  160. Li Q, Yang R, Li J, Qiao C, Zhao Y, Ma Y (2005) Experimental study on propagation of dynamic cracks under blasting loading. Chin J Rock Mech Eng 16:019Google Scholar
  161. Li X, Xie H, Kang Y, Wu X (2010) A brief review and prospect of experimental solid mechanics in China. Acta Mech Solida Sin 23:498–548. doi: 10.1016/S0894-9166(11)60003-7 CrossRefGoogle Scholar
  162. Lima R et al (2008) In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed Microdevices 10:153–167CrossRefGoogle Scholar
  163. Lindholm U (1964) Some experiments with the split Hopkinson pressure bar. J Mech Phys Solids 12:317–335. doi: 10.1016/0022-5096(64)90028-6 CrossRefGoogle Scholar
  164. Litwiller D (2001) CMOS vs. CCD: Facts and fictionGoogle Scholar
  165. Locat J, Lee HJ (2005) Subaqueous debris flows. In: Debris-flow hazards and related phenomena. Springer, Berlin, pp 203–245Google Scholar
  166. Lohse D et al (2004) Impact on soft sand: void collapse and jet formation. Phys Rev Lett 93:198003CrossRefGoogle Scholar
  167. Lu H, Cary P (2000) Deformation measurements by digital image correlation: implementation of a second-order displacement gradient. Exp Mech 40:393–400. doi: 10.1007/BF02326485 CrossRefGoogle Scholar
  168. Luo P, Chao Y, Sutton M, Peters Iii W (1993) Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33:123–132. doi: 10.1007/BF02322488 CrossRefGoogle Scholar
  169. Luo H, Du Y, Hu Z, Lu H (2015) High-strain rate compressive behavior of dry mason sand under confinement. In: Dynamic behavior of materials, vol 1. Springer, Berlin, pp 325–333Google Scholar
  170. Maas H, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15:133–146. doi: 10.1007/BF00190953 CrossRefGoogle Scholar
  171. Manogg P (1964) Anwendungen der schattenoptik zur Untersuchung des zerreissvorgangs von platten. Ernst-Mach-InstGoogle Scholar
  172. Marchand A, Duffy J (1988) An experimental study of the formation process of adiabatic shear bands in a structural steel. J Mech Phys Solids 36:251–283. doi: 10.1016/0022-5096(88)90012-9 CrossRefGoogle Scholar
  173. Mardoukhi A, Saksala T, Hokka M, Kuokkala V-T (2015) An experimental and numerical study of the dynamic Brazilian disc test on Kuru graniteGoogle Scholar
  174. Marquez AM, Braithwaite CH, Weihs TP, Krywopusk NM, Gibbins DJ, Vecchio KS, Meyers MA (2016) Fragmentation and constitutive response of tailored mesostructured aluminum compacts. J Appl Phys 119:145903CrossRefGoogle Scholar
  175. Mayne PW, Coop MR, Springman SM, Huang A-B, Zornberg JG (2009) Geomaterial behavior and testing. In: Proceedings of 17th international conference on soil mechanics and geotechnical engineering, 2009. IOS, pp 2777–2872Google Scholar
  176. McCormick N, Lord J (2010) Digital image correlation. Mater Today 13:52–54. doi: 10.1016/S1369-7021(10)70235-2 CrossRefGoogle Scholar
  177. Meinhart C, Wereley S, Gray M (2000) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809. doi: 10.1088/0957-0233 CrossRefGoogle Scholar
  178. Meng X (1994) Application of dynamic reflection Moire method in studying rock blasting mechanism. Explos Shock Waves 3:193–198CrossRefGoogle Scholar
  179. Meola C, Carlomagno GM (2004) Recent advances in the use of infrared thermography. Meas Sci Technol 15:R27CrossRefGoogle Scholar
  180. Meyers MA (1994) Dynamic behavior of materials. Wiley, New York. doi: 10.1002/9780470172278 CrossRefGoogle Scholar
  181. Miguel AA-I, Bettina S, Donald BD (2011) Influence of the fragmentation process on the dynamics of Vulcanian eruptions: an experimental approach. Earth Planet Sci Lett 302:51–59. doi: 10.1016/j.epsl.2010.11.045 CrossRefGoogle Scholar
  182. Miller C (1949) Half-million stationary images per second with refocused revolving beams. J Soc Motion Pict Eng 53:479–488. doi: 10.5594/J11690 CrossRefGoogle Scholar
  183. Min Y, Hong M, Xi Z, Jian L (2006) Determination of residual stress by use of phase shifting moiré interferometry and hole-drilling method. Opt Lasers Eng 44:68–79. doi: 10.1016/j.optlaseng.2005.02.006 CrossRefGoogle Scholar
  184. Mindess S, Bentur A (1985) A preliminary study of the fracture of concrete beams under impact loading, using high speed photography. Cem Concr Res 15:474–484. doi: 10.1016/0008-8846(85)90121-8 CrossRefGoogle Scholar
  185. Moeyersons J, De Ploey J (1976) Quantitative data on splash erosion, simulated on unvegetated slopes. Z Geomorphol Suppl 25:120–131Google Scholar
  186. Mollenhauer D, Iarve EV, Kim R, Langley B (2006) Examination of ply cracking in composite laminates with open holes: a moiré interferometric and numerical study. Compos A Appl Sci Manuf 37:282–294. doi: 10.1016/j.compositesa.2005.06.004 CrossRefGoogle Scholar
  187. Moss GL, Pond RB (1975) Inhomogeneous thermal changes in copper during plastic elongation. Metall Trans A 6:1223–1235. doi: 10.1007/BF02658532 CrossRefGoogle Scholar
  188. Moulart R, Pierron F, Hallett SR, Wisnom MR (2011) Full-field strain measurement and identification of composites moduli at high strain rate with the virtual fields method. Exp Mech 51:509–536. doi: 10.1007/s11340-010-9433-4 CrossRefGoogle Scholar
  189. Muybridge E (1878) The horse in motion. Library of Congress Prints and Photographs Division. Accessed 23 Jan 2017
  190. Nagao M, Terada T, Somekawa H, Singh A, Mukai T (2014) Deformation behavior of binary Mg-Y alloy under dynamic compression loading. JOM 66:305–311. doi: 10.1007/s11837-013-0854-2 CrossRefGoogle Scholar
  191. Nguyen TL, Hall SA, Vacher P, Viggiani G (2011) Fracture mechanisms in soft rock: identification and quantification of evolving displacement discontinuities by extended digital image correlation. Tectonophysics 503:117–128. doi: 10.1016/j.tecto.2010.09.024 CrossRefGoogle Scholar
  192. Nicoletto G (1991) Moiré interferometry determination of residual stresses in the presence of gradients. Exp Mech 31:252–256CrossRefGoogle Scholar
  193. Nicoletto G, Post D, Smith C (1982) Moire interferometry for high sensitivity measurements in fracture mechanics. In: SESA/JSME Jt Conf Exp Mech, Oahu-Maui, HI, 1982. Freeze Frame Eadweard Muybridge’s Photography of Motion: National Museum of American History (NMAH) (2001)Google Scholar
  194. Ohtani K, Numata D, Kikuchi T, Sun M, Takayama K, Togami K (2006) A study of hypervelocity impact on cryogenic materials. Int J Impact Eng 33:555–565. doi: 10.1016/j.ijimpeng.2006.09.025 CrossRefGoogle Scholar
  195. Oxfordlasers Lasers for High Speed Imaging.
  196. Pan B (2011) Recent progress in digital image correlation. Exp Mech 51:1223–1235. doi: 10.1007/s11340-010-9418-3 CrossRefGoogle Scholar
  197. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20:062001. doi: 10.1088/0957-0233 CrossRefGoogle Scholar
  198. Pan B, Xie H, Wang Z (2010) Equivalence of digital image correlation criteria for pattern matching. Appl Opt 49:5501–5509. doi: 10.1364/AO.49.005501 CrossRefGoogle Scholar
  199. Parab ND et al (2014) Experimental assessment of fracture of individual sand particles at different loading rates. Int J Impact Eng 68:8–14. doi: 10.1016/j.ijimpeng.2014.01.003 CrossRefGoogle Scholar
  200. Parab ND et al (2017) In situ observation of fracture processes in high-strength concretes and limestone using high-speed X-ray phase-contrast imaging. Philos Trans R Soc A Math Phys Eng Sci. doi: 10.1098/rsta.2016.0178 Google Scholar
  201. Parker R, Jones D (1988) The use of holographic interferometry for turbomachinery fan evaluation during rotating tests. J Turbomach 110:393–400. doi: 10.1115/1.3262209 CrossRefGoogle Scholar
  202. Patorski K (1993) Handbook of the moiré fringe technique. Elsevier Science, AmsterdamGoogle Scholar
  203. Pedrini G, Osten W, Gusev ME (2006) High-speed digital holographic interferometry for vibration measurement. Appl Opt 45:3456–3462. doi: 10.1364/AO.45.003456 CrossRefGoogle Scholar
  204. Peres MR (2013) The focal encyclopedia of photography. Taylor & Francis, LondonGoogle Scholar
  205. Perkins R, Green S (1968) High speed photography in dynamic materials testing. Rev Sci Instrum 39:1209–1210. doi: 10.1063/1.1683621 CrossRefGoogle Scholar
  206. Persson P-A, Holmberg R, Lee J (1993) Rock blasting and explosives engineering. CRC Press, Boca RatonGoogle Scholar
  207. Peters W, Ranson W (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21:213427. doi: 10.1117/12.7972925 Google Scholar
  208. Pierron F, Forquin P (2012) Ultra-high-speed full-field deformation measurements on concrete spalling specimens and stiffness identification with the virtual fields method. Strain 48:388–405. doi: 10.1111/j.1475-1305.2012.00835.x CrossRefGoogle Scholar
  209. Pierron F, Grédiac M (2012) The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements. Springer, London. doi: 10.1007/978-1-4614-1824-5 CrossRefGoogle Scholar
  210. Pierron F, Cheriguene R, Forquin P, Moulart R, Rossi M, Sutton M (2011a) Performances and limitations of three ultra high-speed imaging cameras for full-field deformation measurements. In: Applied Mechanics and Materials, 2011a. Trans Tech Publ, pp 81-86. doi: 10.4028/
  211. Pierron F, Sutton M, Tiwari V (2011b) Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminium bar. Exp Mech 51:537–563. doi: 10.1007/s11340-010-9402-y CrossRefGoogle Scholar
  212. Post D, Han B, Ifju PG (2000) Moiré methods for engineering and science—Moiré interferometry and shadow moiré. In: Photomechanics. Springer, Berlin, pp 151–196. doi: 10.1007/3-540-48800-6_5
  213. Post D, Han B, Ifju P (2012) High sensitivity moiré: experimental analysis for mechanics and materials. Springer, London. doi: 10.1007/978-1-4612-4334-2 Google Scholar
  214. Prasad AK (2000) Particle image velocimetry. Curr Sci Bangalore 79:51–60Google Scholar
  215. Qin YW (1981) Application of Faraday’s effect in static and dynamic holographic photoelasticity. Exp Mech 21:389–393. doi: 10.1007/BF02324801 CrossRefGoogle Scholar
  216. Raffel M, Willert CE, Kompenhans J (2013) Particle image velocimetry: a practical guide. Springer, London. doi: 10.1007/978-3-540-72308-0 Google Scholar
  217. Ramesh K, Hogan JD, Kimberley J, Stickle A (2015) A review of mechanisms and models for dynamic failure, strength, and fragmentation. Planet Space Sci 107:10–23. doi: 10.1016/j.pss.2014.11.010 CrossRefGoogle Scholar
  218. Rastogi PK (2000) Principles of holographic interferometry and speckle metrology. In: Photomechanics. Springer, Berlin, pp 103–151Google Scholar
  219. Rastogi P (2015) Digital optical measurement techniques and applications. Artech House, LondonGoogle Scholar
  220. Rastogi PK, Hack E (2012) Optical methods for solid mechanics: a full-field approach. Wiley, GermanyGoogle Scholar
  221. Ravi-Chandar K (2004) Dynamic fracture. Elsevier, UKGoogle Scholar
  222. Ray SF (2006) High speed photography and photonics, vol PM120. SPIE Press, United StatesGoogle Scholar
  223. Rayleigh L (1874) XII. On the manufacture and theory of diffraction-gratings. Lond Edinb Dublin Philos Mag J Sci 47:81–93. doi: 10.1080/14786447408640996 Google Scholar
  224. Reu PL (2011) High/Ultra-high speed imaging as a diagnostic tool. In: Applied Mechanics and Materials, 2011. Trans Tech Publ, pp 69–74Google Scholar
  225. Reu PL, Miller TJ (2008) The application of high-speed digital image correlation The. J Strain Anal Eng Des 43:673–688. doi: 10.1243/03093247JSA414 CrossRefGoogle Scholar
  226. Righi A (1887) Sui fenomeni che si producono colla sovrapposizione di due peticoli e sopra alcune loro applicazioni. Il Nuovo Cimento (1877–1894) 21:203–228Google Scholar
  227. Riley W, Dally J (1969) Recording dynamic fringe patterns with a Cranz-Schardin camera. Exp Mech 9:27N–33N. doi: 10.1007/BF02327718 CrossRefGoogle Scholar
  228. Rossmanith H, Fourney W (1982) Fracture initiation and stress wave diffraction at cracked interfaces in layered media I. Brittle/brittle transition. Rock Mech 14:209–233CrossRefGoogle Scholar
  229. Rossmanith H, Knasmillner R, Daehnke A, Mishnaevsky L Jr (1996) Wave propagation, damage evolution, and dynamic fracture extension. Part II. Blast Mater Sci 32:403–410. doi: 10.1007/BF02538964 CrossRefGoogle Scholar
  230. Sanborn B, Gunnarsson C, Foster M, Weerasooriya T (2014) Quantitative visualization of human cortical bone mechanical response: studies on the anisotropic compressive response and fracture behavior as a function of loading rate. Exp Mech. doi: 10.1007/s11340-015-0060-y
  231. Sarva SS, Deschanel S, Boyce MC, Chen W (2007) Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 48:2208–2213. doi: 10.1016/j.polymer.2007.02.058 CrossRefGoogle Scholar
  232. Schuler H, Mayrhofer C, Thoma K (2006) Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. Int J Impact Eng 32:1635–1650. doi: 10.1016/j.ijimpeng.2005.01.010 CrossRefGoogle Scholar
  233. Schultz PH, Heineck JT, Anderson JLB (2000) Using 3-D PIV in laboratory impact experiments. Paper presented at the Lunar Planetary Science Conference XXXI, Houston, TX, USA, Mar 01Google Scholar
  234. Seah CC, Børvik T, Remseth S, Pan T-C (2011) Penetration and perforation of rock targets by hard projectiles. In: Advances in rock dynamics and applications, vol 143Google Scholar
  235. Settles G (2006) High-speed imaging of shock waves, explosions and gunshots new digital video technology, combined with some classic imaging techniques, reveals shock waves as never before. Am Sci 94:22–31. doi: 10.1511/2006.1.22 CrossRefGoogle Scholar
  236. Sharma SP, Ruffin SM, Meyer SA, Gillespie WD, Yates LA (1993) Density measurements in an expanding flow using holographic interferometry. J Thermophys Heat Transfer 7:261–268. doi: 10.2514/3.415 CrossRefGoogle Scholar
  237. Sharma A, Shukla A, Prosser R (2002) Mechanical characterization of soft materials using high speed photography and split Hopkinson pressure bar technique. J Mater Sci 37:1005–1017. doi: 10.1023/A:1014308216966 CrossRefGoogle Scholar
  238. Sharpe WN (2008) Springer handbook of experimental solid mechanics. Springer, New York. doi: 10.1007/978-0-387-30877-7_3 CrossRefGoogle Scholar
  239. Shi W, Wu Y, Wu L (2007) Quantitative analysis of the projectile impact on rock using infrared thermography. Int J Impact Eng 34:990–1002CrossRefGoogle Scholar
  240. Shockey DA, Curran DR, Seaman L, Rosenberg JT, Petersen CF (1974) Fragmentation of rock under dynamic loads. Int J Rock Mech Min Sci Geomech Abstr 8:303–317. doi: 10.1016/0148-9062(74)91760-4 CrossRefGoogle Scholar
  241. Shukla A (1991) Dynamic photoelastic studies of wave propagation in granular media. Opt Lasers Eng 14:165–184. doi: 10.1016/0143-8166(91)90047-W CrossRefGoogle Scholar
  242. Shukla A, Damania C (1987) Experimental investigation of wave velocity and dynamic contact stresses in an assembly of disks. Exp Mech 27:268–281. doi: 10.1007/BF02318093 CrossRefGoogle Scholar
  243. Siebert T, Crompton MJ (2013) Application of high speed digital image correlation for vibration mode shape analysis. In: Application of imaging techniques to mechanics of materials and structures, vol 4. Springer, Berlin, pp 291–298. doi: 10.1007/978-1-4419-9796-8_37
  244. Sollier A, Bouyer V, Terzulli L, Doucet M, Decaris L, Hébert P (2012) Expansion of the detonation products of a TATB based high explosive: experimental characterization by photon Doppler velocimetry and high-speed digital shadowgraphy. In: 28th international symposium on shock waves, 2012. Springer, Berlin, pp 251–257. doi: 10.1007/978-3-642-25688-2_38
  245. Song Y, Li M, Wang X, LIu X, Fu X (2014) Experimental test on marble containing single pre-existing cracks under loading and unloading conditions based on high-speed photography. J China Univ Min Technol ​143(5):773–781. doi:​ 10.13247/j.cnki.jcumt.000202
  246. Song Y, Li M, Wang X, Li X, Fu X (2015) Experimental test on marble containing two pre-existing cracks under loading and unloading conditions based on high-speed photography. Chinese J Rock Mech Eng 34(S1):2679–2689. doi: 10.13722/j.cnki.jrme.2013.1718 Google Scholar
  247. Starikovskaia S, Kukaev E, Kuksin AY, Nudnova M, Starikovskii AY (2004) Analysis of the spatial uniformity of the combustion of a gaseous mixture initiated by a nanosecond discharge. Combust Flame 139:177–187. doi: 10.1016/j.combustflame.2004.07.005 CrossRefGoogle Scholar
  248. Stetson KA, Powell RL (1965) Interferometric hologram evaluation and real-time vibration analysis of diffuse objects. JOSA 55:1694–1695. doi: 10.1364/JOSA.55.001694 CrossRefGoogle Scholar
  249. Strassburger E, Senf H, Rothenhäusler H (1994) Fracture propagation during impact in three types of ceramics. Le J Phys IV 4:C8-653–C658-658. doi: 10.1051/jp4:1994899
  250. Sultanoff M (1950) A 100,000,000-Frame-per-Second Camera. Rev Sci Instrum 21:653–656. doi: 10.1063/1.1745678 CrossRefGoogle Scholar
  251. Surrel Y (2003) Optique C1-18851 Images optiques; mesures 2D et 3D Polycopié de cours, vol 8. Conservatoire National des Arts et MétiersGoogle Scholar
  252. Sutton M, Mingqi C, Peters W, Chao Y, McNeill S (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4:143–150. doi: 10.1016/0262-8856(86)90057-0 CrossRefGoogle Scholar
  253. Sutton M, Yan J, Tiwari V, Schreier H, Orteu J (2008) The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt Lasers Eng 46:746–757. doi: 10.1016/j.optlaseng.2008.05.005 CrossRefGoogle Scholar
  254. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, BerlinGoogle Scholar
  255. Theocaris PS, Gdoutos E (1972) An optical method for determining opening-mode and edge sliding-mode stress-intensity factors. J Appl Mech 39:91–97. doi: 10.1115/1.3422676 CrossRefGoogle Scholar
  256. Thomson KC, Ahrens TJ, Toksöz MN (1969) Dynamic photoelastic studies of p and s wave propagation in prestressed media. Geophysics 34:696–712. doi: 10.1190/1.1440041 CrossRefGoogle Scholar
  257. Thoroddsen ST, Etoh TG, Takehara K (2008) High-speed imaging of drops and bubbles. Annu Rev Fluid Mech 40:257–285. doi: 10.1146/annurev.fluid.40.111406.102215 CrossRefGoogle Scholar
  258. Tieng SM, Lai WZ (1992) Temperature measurements of reacting flowfield by phase-shifting holographic interferometry. J Thermophys Heat Transf 6:445–451. doi: 10.2514/3.381 CrossRefGoogle Scholar
  259. Tiwari V, Sutton M, McNeill KO, Fourney W, Bretall D (2007) On studying improvised explosive devices (IEDs) using digital image correlations. In: Proceedings 2007 SEM annual conference exposition Exp. Appl. Mech, MA, USA, January 2007. SpringfieldGoogle Scholar
  260. Tiwari V, Sutton M, McNeill S (2007b) Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation. Exp Mech 47:561–579CrossRefGoogle Scholar
  261. Tochigi Y et al (2013) A global-shutter CMOS image sensor with readout speed of 1-Tpixel/s burst and 780-Mpixel/s continuous. IEEE J Solid-State Circuits 48:329–338. doi: 10.1109/JSSC.2012.2219685 CrossRefGoogle Scholar
  262. Tong W (2005) An evaluation of digital image correlation criteria for strain mapping applications. Strain 41:167–175. doi: 10.1111/j.1475-1305.2005.00227.x CrossRefGoogle Scholar
  263. Trojanowski A, Macdougall D, Harding J (1998) An improved technique for the experimental measurement of specimen surface temperature during Hopkinson-bar tests. Meas Sci Technol 9:12CrossRefGoogle Scholar
  264. Trolinger J, Hsu J (1993) Flowfield diagnostics by holographic interferometry and tomography. In: Fringe, pp 423–439Google Scholar
  265. True DG (1975) Penetration of projectiles into seafloor soils. DTIC DocumentGoogle Scholar
  266. Turchi P et al (1991) Generation of high-energy x-radiation using a plasma flow switch. J Appl Phys 69:1999–2007. doi: 10.1063/1.348773 CrossRefGoogle Scholar
  267. Tuzi Z (1928) Photographic and Kinematographic Study of Photo-Elasticity. Sci Pap Inst Phys Chem Res 8:247–267Google Scholar
  268. Van Dijk A, Meesters A, Bruijnzeel L (2002) Exponential distribution theory and the interpretation of splash detachment and transport experiments. Soil Sci Soc Am J 66:1466–1474. doi: 10.2136/sssaj2002.1466 CrossRefGoogle Scholar
  269. Versluis M (2013) High-speed imaging in fluids. Exp Fluids 54:1–35CrossRefGoogle Scholar
  270. Walley S (2014) An introduction to the properties of silica glass in ballistic applications. Strain 50:470–500. doi: 10.1111/str.12075 CrossRefGoogle Scholar
  271. Wang D, Wang Y, Yang B, Zhang W, Lancaster N (2008) Statistical analysis of sand grain/bed collision process recorded by high-speed digital camera. Sedimentology 55:461–470. doi: 10.1111/j.1365-3091.2007.00909.x CrossRefGoogle Scholar
  272. Wang Y, Wang D, Wang L, Zhang Y (2009) Measurement of sand creep on a flat sand bed using a high-speed digital camera. Sedimentology 56:1705–1712. doi: 10.1111/sed.12232 CrossRefGoogle Scholar
  273. Wang H, Liu D, Gong W, Li L (2015) Dynamic analysis of granite rockburst based on the PIV technique. Int J Min Sci Technol 25:275–283. doi: 10.1016/j.ijmst.2015.02.017 CrossRefGoogle Scholar
  274. Weinstein LA (1969) Open resonators and open waveguides. The Golem Press, BoulderGoogle Scholar
  275. White D, Take W, Bolton M (2003) Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 53:619–632. doi: 10.1680/geot.2003.53.7.619 CrossRefGoogle Scholar
  276. Whittles D, Kingman S, Lowndes I, Jackson K (2006) Laboratory and numerical investigation into the characteristics of rock fragmentation. Miner Eng 19:1418–1429. doi: 10.1016/j.mineng.2006.02.004 CrossRefGoogle Scholar
  277. Willert C, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids 12:353–358. doi: 10.1007/BF00193880 CrossRefGoogle Scholar
  278. Willmott G, Field J (2006) A high-speed photographic study of fast cracks in shocked diamond. Philos Mag 86:4305–4318CrossRefGoogle Scholar
  279. Wiza JL (1979) Microchannel plate detectors. Nucl Instrum Methods 162:587–601CrossRefGoogle Scholar
  280. Wong LN, Einstein H (2006) Fracturing behavior of prismatic specimens containing single flaws. In: Golden Rocks 2006, The 41st US symposium on rock mechanics (USRMS), Colorado, 21 June 2006. American Rock Mechanics AssociationGoogle Scholar
  281. Wong L, Einstein H (2009a) Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng 42:475–511. doi: 10.1007/s00603-008-0002-4 CrossRefGoogle Scholar
  282. Wong L, Einstein H (2009b) Using high speed video imaging in the study of cracking processes in rock. Geotech Test J 32:1. doi: 10.1520/GTJ101631 Google Scholar
  283. Wong LNY, Zou C, Cheng Y (2014) Fracturing and failure behavior of Carrara marble in quasistatic and dynamic Brazilian disc tests. Rock Mech Rock Eng 47:1117–1133. doi: 10.1007/s00603-013-0465-9 CrossRefGoogle Scholar
  284. Wu Z, Lu J, Han B (1998) Study of residual stress distribution by a combined method of Moire interferometry and incremental hole drilling, part II: implementation. J Appl Mech 65:844–850CrossRefGoogle Scholar
  285. Wu S, Chau K, Yu T (2004) Crushing and fragmentation of brittle spheres under double impact test. Powder Technol 143:41–55. doi: 10.1016/j.powtec.2004.04.028 CrossRefGoogle Scholar
  286. Wyant JC, Koliopoulos CL, Bhushan B, George OE (1984) An optical profilometer for surface characterization of magnetic media. ASLE Trans 27:101–113. doi: 10.1080/05698198408981550 CrossRefGoogle Scholar
  287. Xiang G, Zhang Q, Liu H, Wu X, Ju X (2007) Time-resolved deformation measurements of the Portevin–Le Chatelier bands. Scripta Mater 56:721–724CrossRefGoogle Scholar
  288. Xu LR, Huang YY, Rosakis AJ (2003) Dynamic crack deflection and penetration at interfaces in homogeneous materials: experimental studies and model predictions. J Mech Phys Solids 51:461–486. doi: 10.1016/S0022-5096(02)00080-7 CrossRefGoogle Scholar
  289. Xu W, Yao X, Yeh H, Jin G (2005) Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology. Polym Testing 24:900–908. doi: 10.1016/j.polymertesting.2005.06.005 CrossRefGoogle Scholar
  290. Xu S, Huang J, Wang P, Zhang C, Zhou L, Hu S (2015) Investigation of rock material under combined compression and shear dynamic loading: an experimental technique. Int J Impact Eng 86:206–222. doi: 10.1016/j.ijimpeng.2015.07.014 CrossRefGoogle Scholar
  291. Yang R, Yue Z, Dong J, Gui L, Xiao T (2008a) Dynamic caustics experiment of blasting crack propagation in discontinuous jointed material. J China Univ Min Technol 4:006Google Scholar
  292. Yang R, Yue Z, Xiao T, Dong J, Yang L (2008b) Dynamic caustics experiment on crack propagation of jointed medium fracture with controlled blasting. Chin J Rock Mech Eng 2:005Google Scholar
  293. Yang B, Wang Y, Zhang Y (2009a) The 3-D spread of saltation sand over a flat bed surface in aeolian sand transport. Adv Powder Technol 20:303–309. doi: 10.1016/j.apt.2008.11.002 CrossRefGoogle Scholar
  294. Yang R, Yang L, Yue Z, Xiao T, Dong J, Niu X (2009b) Dynamic caustics experiment of crack propagation in material containing flaws under blasting load. J China Coal Soc 34(2):187–192Google Scholar
  295. Yang R, Yue Z, Sun Z, Xiao T, Guo D (2009c) Dynamic fracture behavior of rock under impact load using the caustics method. Min Sci Technol (China) 19:79–83. doi: 10.1016/S1674-5264(09)60015-6 CrossRefGoogle Scholar
  296. Yang L, Xu P, Gao X, Sun J (2014) Digital laser high-speed photography system and its application in photomechanical tests with blast loading. Sci Technol Rev 32:013. doi: 10.3981/j.issn.1000-7857.2014.32.002 Google Scholar
  297. Yang R, Wang Y, Ding C (2016a) Laboratory study of wave propagation due to explosion in a jointed medium. Int J Rock Mech Min Sci 81:70–78Google Scholar
  298. Yang R, Xu P, Yue Z, Chen C (2016b) Dynamic fracture analysis of crack–defect interaction for mode I running crack using digital dynamic caustics method. Eng Fract Mech 161:63–75. doi: 10.1016/j.engfracmech.2016.04.042 CrossRefGoogle Scholar
  299. Yao X, Xu W (2011) Recent application of caustics on experimental dynamic fracture studies. Fatigue Fract Eng Mater Struct 34:448–459CrossRefGoogle Scholar
  300. Yao XF, Jin GC, Arakawa K, Takahashi K (2002) Experimental studies on dynamic fracture behavior of thin plates with parallel single edge cracks. Polym Testing 21:933–940. doi: 10.1016/S0142-9418(02)00037-5 CrossRefGoogle Scholar
  301. Yao X, Xu W, Xu M, Arakawa K, Mada T, Takahashi K (2003) Experimental study of dynamic fracture behavior of PMMA with overlapping offset-parallel cracks. Polym Testing 22:663–670. doi: 10.1016/S0142-9418(02)00173-3 CrossRefGoogle Scholar
  302. Yao X, Xu W, Arakawa K, Takahashi K, Mada T (2005) Dynamic optical visualization on the interaction between propagating crack and stationary crack. Opt Lasers Eng 43:195–207. doi: 10.1016/j.optlaseng.2004.06.003 CrossRefGoogle Scholar
  303. Yao Y, Bonakdar A, Faber J, Gries T, Mobasher B (2014) Distributed cracking mechanisms in textile-reinforced concrete under high speed tensile tests. Mater Struct. doi: 10.1617/s11527-015-0685-4 Google Scholar
  304. Yin Z, Ma H, Hu Z, Zou Y (2014a) Effect of static-dynamic coupling loading on fracture toughness and failure characteristics in marble. J Eng Sci Technol Rev 7:169–174Google Scholar
  305. Yin Z, Wang L, Ma H, Hu Z, Jin J (2014b) Application of optical measurement method in Brazilian disk splitting experiment under dynamic loading. Sensors Transducers 171:176–182Google Scholar
  306. Younis N (2012) Experimental strain investigation of bolt torque effect in mechanically fastened joints. Engineering 4:359–367. doi: 10.4236/eng.2012.47047 CrossRefGoogle Scholar
  307. Yu L, Pan B (2015) The errors in digital image correlation due to overmatched shape functions. Meas Sci Technol 26:045202. doi: 10.1088/0957-0233 CrossRefGoogle Scholar
  308. Yu-wen Q (1979) Application of faraday’s effect in the holographic photoelasticity. Acta Mech Sin 3:008Google Scholar
  309. Zauel R, Yeni Y, Bay B, Dong X, Fyhrie D (2006) Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. J Biomech Eng 128:1–6. doi: 10.1115/1.2146001 CrossRefGoogle Scholar
  310. Zehnder AT, Rosakis AJ (1990) Dynamic fracture initiation and propagation in 4340 steel under impact loading. Int J Fract 43:271–285. doi: 10.1007/BF00035087 CrossRefGoogle Scholar
  311. Zehnder AT, Rosakis AJ (1991) On the temperature distribution at the vicinity of dynamically propagating cracks in 4340 steel. J Mech Phys Solids 39:385–415. doi: 10.1016/0022-5096(91)90019-K CrossRefGoogle Scholar
  312. Zehnder AT, Guduru PR, Rosakis AJ, Ravichandran G (2000) Million frames per second infrared imaging system. Rev Sci Instrum 71:3762–3768. doi: 10.1063/1.1310350 CrossRefGoogle Scholar
  313. Zhang C (2014a) Application of digital image correlation in dynamic testing. University of Science and Technology of China, HefeiGoogle Scholar
  314. Zhang QB (2014b) Mechanical behaviour of rock materials under dynamic loading. École Polytechnique Fédérale de LausanneGoogle Scholar
  315. Zhang QB, Zhao J (2013a) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min 60:423–439. doi: 10.1016/j.ijrmms.2013.01.005 Google Scholar
  316. Zhang QB, Zhao J (2013b) Effect of loading rate on fracture toughness and failure micromechanisms in marble. Eng Fract Mech 102:288–309. doi: 10.1016/j.engfracmech.2013.02.009 CrossRefGoogle Scholar
  317. Zhang QB, Zhao J (2014a) Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms. Int J Fract 189:1–32. doi: 10.1007/s10704-014-9959-z CrossRefGoogle Scholar
  318. Zhang QB, Zhao J (2014b) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47:1411–1478. doi: 10.1007/s00603-013-0463-y CrossRefGoogle Scholar
  319. Zhang J, Tao B, Katz J (1997) Turbulent flow measurement in a square duct with hybrid holographic PIV. Exp Fluids 23:373–381. doi: 10.1007/s003480050124 CrossRefGoogle Scholar
  320. Zhang Z, Kou S, Jiang L, Lindqvist P-A (2000) Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. Int J Rock Mech Min Sci 37:745–762. doi: 10.1016/S1365-1609(00)00008-3 CrossRefGoogle Scholar
  321. Zhang W, Wang Y, Lee S-J (2007) Two-phase measurements of wind and saltating sand in an atmospheric boundary layer. Geomorphology 88:109–119. doi: 10.1016/j.geomorph.2006.10.017 CrossRefGoogle Scholar
  322. Zhang R, Guo R, Wang S (2014a) Mixed mode fracture study of PMMA using digital gradient sensing method. Eng Fract Mech 119:164–172. doi: 10.1016/j.engfracmech.2014.02.020 CrossRefGoogle Scholar
  323. Zhang X, Sun Z, Hu X (2014b) Low temperature fracture toughness of PMMA and crack-tip conditions under flat-tipped cylindrical indenter. Polym Testing 38:57–63. doi: 10.1016/j.polymertesting.2014.06.009 CrossRefGoogle Scholar
  324. Zhang Y, Wang Y, Jia P (2014c) Measuring the kinetic parameters of saltating sand grains using a high-speed digital camera. Sci China Phys Mech Astronomy 57:1137–1143. doi: 10.1007/s11433-013-5284-1 CrossRefGoogle Scholar
  325. Zhang QB, Braithwaite CH, Zhao J (2017) Hugoniot equation of state of rock materials under shock compression. Philos Trans R Soc A Math Phys Eng Sci 375(2085):20160169. ​doi: 10.1098/rsta.2016.0169 CrossRefGoogle Scholar
  326. Zhou YX, Zhao J (eds) (2011) Advances in rock dynamics and applications. CRC Press, Boca RatonGoogle Scholar
  327. Zhou M, Rosakis A, Ravichandran G (1996) Dynamically propagating shear bands in impact-loaded prenotched plates—I. Experimental investigations of temperature signatures and propagation speed. J Mech Phys Solids 44:981–1006. doi: 10.1016/S1365-1609(00)00008-3 CrossRefGoogle Scholar
  328. Zhou Z, Li X, Zou Y, Jiang Y, Li G (2014) Dynamic Brazilian tests of granite under coupled static and dynamic loads. Rock Mech Rock Eng 47:495–505. doi: 10.1007/s00603-013-0441-4 CrossRefGoogle Scholar
  329. Zhu H (2015) A novel methodology for high strain rate testing using full-field measurements and the virtual fields methods. University of Technology of Troyes, TroyesGoogle Scholar
  330. Zou C, Wong LNY (2014) Study of mechanical properties and fracturing processes of Carrara marble in dynamic Brazilian tests by two optical observation methods. Rock Mech Appl Civ Min Pet Eng 20–29. doi: 10.1061/9780784413395.004
  331. Zou X-Y, Wang Z-L, Hao Q-Z, Zhang C-L, Liu Y-Z, Dong G-R (2001) The distribution of velocity and energy of saltating sand grains in a wind tunnel. Geomorphology 36:155–165CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringMonash UniversityClaytonAustralia
  2. 2.Cavendish LaboratoryCambridgeUK
  3. 3.Institute of Solid MechanicsBeihang UniversityBeijingChina

Personalised recommendations