Skip to main content
Log in

Parameter Calibration and Numerical Analysis of Twin Shallow Tunnels

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Prediction of displacements and lining stresses in underground openings represents a challenging task. The main reason is primarily related to the complexity of this ground–structure interaction problem and secondly to the difficulties in obtaining a reliable geotechnical characterisation of the soil or the rock. In any case, especially when class A predictions fail in forecasting the system behaviour, performing class B or C predictions, which rely on a higher level of knowledge of the surrounding ground, can represent a useful resource for identifying and reducing model deficiencies. The case study presented in this paper deals with the construction works of twin-tube shallow tunnels excavated in a stiff and fine-grained deposit. The work initially focuses on the ground parameter calibration against experimental data, which together with the choice of an appropriate constitutive model plays a major role in the assessment of tunnelling-induced deformations. Since two-dimensional analyses imply initial assumptions to take into account the effect of the 3D excavation, three-dimensional finite element analyses were preferred. Comparisons between monitoring data and results of numerical simulations are provided. The available field data include displacements and deformation measurements regarding both the ground and tunnel lining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Addenbrooke T, Potts D (2001) Twin tunnel interaction: surface and subsurface effects. Int J Geomech 1(2):249–271. doi:10.1061/(ASCE)1532-3641

    Article  Google Scholar 

  • Anagnostou G (2008) The effect of tunnel advance rate on the surface settlements. In: 12th International Conference of IACMAG, Goa, India

  • Augarde CE, Burd HJ (2001) Three-dimensional finite element analysis of lined tunnels. Int J Numer Anal Methods Geomech 25:243–262

    Article  Google Scholar 

  • Baguelin F (1978) The pressuremeter and foundation engineering. Trans Tech Publications, Clausthal

    Google Scholar 

  • Benz T (2007) Small-strain stiffness of soils and its numerical consequences. Univ. Stuttgart, Inst. f. Geotechnik, Stuttgart

    Google Scholar 

  • Brinkgreve RBJ, Bakker KJ, Bonnier PG (2006) The relevance of small-strain soil stiffness in numerical simulation of excavation and tunnelling projects. In: Proceedings of the 6th European Conference on Numerical Methods in Geotechnical Engineering—Numerical Methods in Geotechnical Engineering, p 133–139

  • Brinkgreve RBJ, Engine E, Swolfs WM (2013) Plaxis 3D 213 user manual. Plaxis bv, The Netherlands

    Google Scholar 

  • Brinkgreve RBJ, Kumarswamy S, Swolfs WM, Waterman D, Chesaru A, Bonnier PG, Haxaire A (2015) Paxis 2D 2015 user manual. Plaxis bv, Netherlands

    Google Scholar 

  • Buselli F, Graziani A, Lieto S, Rotonda T (2013) Observations from monitoring of tunnel excavations in clayey silt. World Tunnel Congress 2013, Taylor & Francis, pp 2078–2085

  • D’Elia B (2006) Esperienze sul comportamento di alti fronti di scavo. Riv Ital Geotech 2:12–48

    Google Scholar 

  • Do N-A, Dias D, Oreste P, Djeran-Maigre I (2014) Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. Tunn Undergr Space Technol 42:40–51. doi:10.1016/j.tust.2014.02.001

    Article  Google Scholar 

  • Fargnoli V, Boldini D, Amorosi A (2015) Twin tunnel excavation in coarse grained soils: observations and numerical back-predictions under free field conditions and in presence of a surface structure. Tunn Undergr Space Technol 49:454–469

    Article  Google Scholar 

  • Fillibeck J, Vogt N (2012) Prediction of tunnel-induced settlements in soft ground. Parameters 1:T2

    Google Scholar 

  • Franzius J, Potts D (2005) Influence of mesh geometry on three-dimensional finite-element analysis of tunnel excavation. Int J Geomech 5(3):256–266. doi:10.1061/(ASCE)1532-3641

    Article  Google Scholar 

  • Galavi V, Schweiger HF (2010) Nonlocal multilaminate model for strain softening analysis. Int J Geomech 10:30–44

    Article  Google Scholar 

  • Galli G, Grimaldi A, Leonardi A (2004) Three-dimensional modelling of tunnel excavation and lining. Comput Geotech 31:171–183. doi:10.1016/j.compgeo.2004.02.003

    Article  Google Scholar 

  • Hardin BO, Black WL (1969) Closure on vibration modulus of normally consolidated clay. Proc of ASCE 95:1531–1537

    Google Scholar 

  • Jamiolkowski M, Lancellotta R, Lo Presti DCF (1994) Remarks on the stiffness at small strains of six Italian clays. Proceedings of the International Symposium, 2. Sapporo, Japan, 12–14 September 1994, pp 817–836

  • Janin JP, Dias D, Emeriault F, Kastner R, Le Bissonnais H, Guilloux A (2015) Numerical back-analysis of the southern Toulon tunnel measurements: a comparison of 3D and 2D approaches. Eng Geol 195:42–52. doi:10.1016/j.enggeo.2015.04.028

    Article  Google Scholar 

  • Karakus M, Ozsan A, Başarir H (2007) Finite element analysis for the twin metro tunnel constructed in Ankara Clay, Turkey. Bull Eng Geol Environ 66:71–79. doi:10.1007/s10064-006-0056-z

    Article  Google Scholar 

  • Katzenbach R, Breth H, (1981) Nonlinear 3-D analysis for NATM in Frankfurt Clay. In: Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 10th

  • Lade P (2005) Overview of constitutive models for soils. In: Calibration of constitutive models. American Society of Civil Engineers, ASCE, pp 1–34. doi:10.1061/40786(165)1

  • Lambe TW (1973) Predictions in soil engineering. Géotechnique 23:151–202. doi:10.1680/geot.1973.23.2.151

    Article  Google Scholar 

  • Lunardi P (2008) Design and construction of tunnels: analysis of controlled deformations in Rock and Soil (ADECO-RS). Springer Science & Business Media

  • Möller SC (2006) Tunnel induced settlements and structural forces in linings. Univ. Stuttgart, Inst. f. Geotechnik, Stuttgart

    Google Scholar 

  • Monaco C, Tortorici L, Nicolich R, Cernobori L, Costa M (1996) From collisional to rifted basins: an example from the southern Calabrian arc (Italy). Tectonophysics 266:233–249

    Article  Google Scholar 

  • Negro A, Queiroz PIB (2000) Prediction and performance: a review of numerical analyses for tunnels. Geotech Asp Undergr Constr Soft Ground 409–418

  • Ng CWW, Lee KM, Tang DKW (2004) Three-dimensional numerical investigations of new Austrian tunnelling method (NATM) twin tunnel interactions. Can Geotech J 41:523–539. doi:10.1139/t04-008

    Article  Google Scholar 

  • Schanz T, Vermeer PA, Bonnier PG (1999) The hardening soil model: formulation and verification. Beyond 2000 Comput Geotech 281–296

  • Schweiger HF (2008) The role of advanced constitutive models in geotechnical engineering. Geomech Tunn 1:336–344. doi:10.1002/geot.200800033

    Article  Google Scholar 

  • Segato D, Scarpelli G (2006) Morphological effects on settlements induced by shallow tunnelling. In: Numerical methods in geotechnical engineering: Sixth European Conference on Numerical Methods in Geotechnical Engineering (Graz, Austria, 6–8 Sept 2006), p 299

  • Segato D, Scarpelli G, Fruzzetti VME, Ruggeri P, Vita A, Paternesi A (2015) Excavation works in stiff jointed clay material: examples from the Trubi formation, southern Italy. Landslides 12:721–730. doi:10.1007/s10346-014-0505-x

    Article  Google Scholar 

  • Shibuya S, Hwang, SC, Mitachi, T (1997) Elastic shear modulus of soft clays from shear wave velocity measurement. Geotechnique 47:593–601

    Article  Google Scholar 

  • Svoboda T, Masin D (2011) Comparison of displacement field predicted by 2D and 3D finite element modelling of shallow NATM tunnels in clays. Geotechnik 34:115–126

    Article  Google Scholar 

  • Vardanega P, Bolton M (2013) Stiffness of clays and silts: normalizing shear modulus and shear strain. J Geotech Geoenviron Eng 139:1575–1589. doi:10.1061/(ASCE)GT.1943-5606.0000887

    Article  Google Scholar 

  • Vermeer PA, Bonnier PG, Möller SC (2002) On a smart use of 3D-FEM in tunnelling. In: Proceeding of Eighth International Symposium on Numerical Models in Geomechanics, p 361–366

  • Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. J Geotech Eng 117:89–107

    Article  Google Scholar 

  • Wongsaroj J, Soga K, Mair RJ (2007) Modelling of long-term ground response to tunnelling under St James’s Park, London. Géotechnique 57:75–90

    Article  Google Scholar 

  • Yeo CH, Hou LF, Chee TS, Hasegawa O, Suzuki H, Shinji M (2009) Three dimensional numerical modelling of a NATM tunnel. Int J JCRM 5:33–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Paternesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paternesi, A., Schweiger, H.F. & Scarpelli, G. Parameter Calibration and Numerical Analysis of Twin Shallow Tunnels. Rock Mech Rock Eng 50, 1243–1262 (2017). https://doi.org/10.1007/s00603-016-1152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1152-4

Keywords

Navigation