Skip to main content

Advertisement

Log in

Energy Dissipating Devices in Falling Rock Protection Barriers

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Rockfall is a phenomenon which, when uncontrolled, may cause extensive material damage and personal injury. One of the structures used to avoid accidents caused by debris flows or rockfalls is flexible barriers. The energy dissipating devices which absorb the energy generated by rock impact and reduce the mechanical stresses in the rest of the elements of the structure are an essential part of these kinds of structures. This document proposes an overview of the performance of energy dissipating devices, as well as of the role that they fulfil in the barrier. Furthermore, a compilation and a description of the dissipating elements found in the literature are proposed. Additionally, an analysis has been performed of the aspects taken into account in the design, such as experimental (quasi-static and dynamic) tests observing the variation of the behaviour curve depending on the test speed and numerical simulations by means of several finite element software packages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bertrand D, Trad A, Limam A, Silvani C (2012) Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method: from the local scale to the structure scale. Rock Mech Rock Eng 45(5):885–900. doi:10.1007/s00603-012-0222-5

    Google Scholar 

  • Blanco-Fernandez E, Castro-Fresno D, Del Coz Díaz JJ, Díaz J (2013) Field measurements of anchored flexible systems for slope stabilisation: evidence of passive behaviour. Eng Geol 153:95–104. doi:10.1016/j.enggeo.2012.11.015

    Article  Google Scholar 

  • Castro-Fresno D, Del Coz Díaz JJ, Garcia Nieto PJ, Norambuena Contreras J (2009) Comparative analysis of mechanical tensile tests and the explicit simulation of a brake energy dissipater by FEM. Int J Nonlinear Sci Numer Simul 10(8):1059–1085

    Article  Google Scholar 

  • Cazzani A, Mongiovì L, Frenez T (2002) Dynamic finite element analysis of interceptive devices for falling rocks. Int J Rock Mech Min Sci 39(3):303–321. doi:10.1016/S1365-1609(02)00037-0

    Article  Google Scholar 

  • Chen Y, Li J, Ran L (2013) A review of rockfall control measures along highway. Appl Mech Mater 353–356:2385–2391. doi:10.4028/www.scientific.net/AMM.353-356.2385

    Article  Google Scholar 

  • de Miranda S, Gentilini C, Gottardi G, Govoni L, Mentani A, Ubertini F (2015) Virtual testing of existing semi-rigid rockfall protection barriers. Eng Struct 85:83–94. doi:10.1016/j.engstruct.2014.12.022

    Article  Google Scholar 

  • del Coz Díaz J J, García Nieto PJ, Castro-Fresno D, Rodríguez-Hernández J (2010) Nonlinear explicit analysis and study of the behaviour of a new ring-type brake energy dissipator by FEM and experimental comparison. Appl Math Comput 216(5):1571–1582. doi:10.1016/j.amc.2010.03.009

    Google Scholar 

  • Descoeudres F (1988) Special lecture: stabilizing methods in rock slopes against sliding, toppling or rock falls [Conference speciale: methodes confortatives en versants rocheux contre les glissements, le fauchage ou les chutes de blocs] Landslides. Proc. 5th symposium, Lausanne, 1988. Vol. 2, pp. 821–828

  • Descoeudres F, Montani Stoffel S, Boll A, Gerber W (1999). Rockfalls. Copying study on disaster resilient infrastructure. IDNDR Programme Forum 1999

  • Dhakal S, Bhandary NP, Yatabe R, Kinoshita N (2011) Experimental, numerical and analytical modelling of a newly developed rockfall protective cable-net structure. Nat Hazards Earth Syst Sci 11(12):3197–3212. doi:10.5194/nhess-11-3197-2011

    Article  Google Scholar 

  • Dhakal S, Bhandary NP, Yatabe R, Kinoshita N (2012) Numerical and analytical investigation towards performance enhancement of a newly developed rockfall protective cable-net structure. Nat Hazards Earth Syst Sci 12(4):1135–1149. doi:10.5194/nhess-12-1135-2012

    Article  Google Scholar 

  • EN 13411-5:2004 + A1 (2008) Terminations for steel wire ropes—safety—part 5: U-bolt wire rope grips. Brussels

  • EN 1537 (2015) Execution of special geotechnical works—ground anchors. Brussels

  • EOTA (2008) Guideline for the European technical approval of falling rock protection kits. Tech. Rep., European Organization for Technical Approvals (ETAG 27) February 2008, Brussels

  • Escallón JP, Wendeler C (2013) Numerical simulations of quasi-static and rockfall impact tests of ultra-high strength steel wire-ring nets using Abaqus/Explicit. 2013 SIMULIA Community Conference

  • Escallón JP, Wendeler C, Chatzi E, Bartelt P (2014) Parameter identification of rockfall protection barrier components through an inverse formulation. Eng Struct 77:1–16. doi:10.1016/j.engstruct.2014.07.019

    Article  Google Scholar 

  • Fulde M, Müller M (2013) Development of a modular brake element for the use in modern rockfall catchment fences. In: 64th highway geology symposium, 297–314

  • Gentilini C, Govoni L, de Miranda S, Gottardi G, Ubertini F (2012) Three-dimensional numerical modelling of falling rock protection barriers. Comput Geotech 44:58–72. doi:10.1016/j.compgeo.2012.03.011

    Article  Google Scholar 

  • Gentilini C, Gottardi G, Govoni L, Mentani A, Ubertini F (2013) Design of falling rock protection barriers using numerical models. Eng Struct 50:96–106. doi:10.1016/j.engstruct.2012.07.008

    Article  Google Scholar 

  • Gerber W (2001) Guideline for the approval of rockfall protection kits. Swiss agency for the Environment, Forests and Landscape (SAEFL), Swiss federal research institute WSL, Berne

    Google Scholar 

  • Grassl H, Bartelt PA, Volkwein A, Wartmann S (2003) Experimental and numerical modeling of highly flexible rockfall protection barriers. Soil and Rock America, Cambridge, MA

    Google Scholar 

  • López Quijada L (2007). Development and analysis of a dynamic barrier for dissipation of low energy impact as a rockfall protection element, using mathematical models, finite element software and laboratory tests, taking into account dynamic variables. PhD thesis, Universidad de Cantabria, Santander (original source in Spanish)

  • Moon T, Oh J, Mun B (2014) Practical design of rockfall catchfence at urban area from a numerical analysis approach. Eng Geol 172:41–56. doi:10.1016/j.enggeo.2014.01.004

    Article  Google Scholar 

  • Moreillon A (2006) European Patent No. 1 156 158 B1. Lausane. Switzerland

  • Muraishi H, Samizo M, Sugiyama T (2005) Development of a flexible low energy rockfall protection fence. Q Rep RTRI 46(3):161–166. doi:10.2219/rtriqr.46.161

    Article  Google Scholar 

  • NFP 95 308 (1996) Rock falling protection equipment—net trap. AFNOR, France

    Google Scholar 

  • Nicot F, Cambou B, Mazzoleni G (2001) Design of rockfall restraining nets from a discrete element modelling. Rock Mech Rock Eng 34(2):99–118. doi:10.1007/s006030170017

    Article  Google Scholar 

  • Peila D, Ronco C (2009) Technical note: design of rockfall net fences and the new ETAG 027 European guideline. Nat Hazards Earth Syst Sci 9(4):1291–1298

    Article  Google Scholar 

  • Peila D, Pelizza S, Sassudelli F (1998) Evaluation of behaviour of rockfall restraining nets by full scale tests. Rock Mech Rock Eng 31(1):1–24

    Article  Google Scholar 

  • Peila D, Oggeri C, Castiglia C (2007) Ground reinforced embankments for rockfall protection: design and evaluation of full scale tests. Landslides 4(3):255–265. doi:10.1007/s10346-007-0081-4

    Article  Google Scholar 

  • Schellenberg K, Vogel T (2009) A dynamic design method for rockfall protection galleries. Struct Eng Int J Int Assoc Bridge Struct Eng (IABSE) 19(3):321–326. doi:10.2749/101686609788957928

    Google Scholar 

  • Smith D, Duffy J (1990) Field test and evaluation of rockfall restraining nets, final report. California Department of Transportation Materials and Research. USA

  • Sun JS, Lee KH, Lee HP (2000) Comparison of implicit and explicit finite element methods for dynamic problems. J Mater Process Technol 105(1–2):110–118. doi:10.1016/S0924-0136(00)00580-X

    Article  Google Scholar 

  • Tajima T, Maegawa K, Iwasaki M, Shinohara K, Kawakami K (2009) Evaluation of pocket-type rock net by full scale tests. IABSE. doi:10.2749/222137809796088846

    Google Scholar 

  • Thomel L (1998) European Patent No. 0 877 1 22 A1. Juan les Pins. France

  • Trad A (2011). Analyse du Comportement et Modélisation de Structures Souples de Protection: le cas des Ecrans de Filets Pare-Pierres sous Sollicitations Statique et Dynamique. PhD thesis, Institut National des Sciences Appliquées de Lyon

  • Trad A, Limam A, Robit P (2011) Real scale experiments on rockfall protection barriers. Appl Mech Mater 82:734–739. doi:10.4028/www.scientific.net/AMM.82.734

    Article  Google Scholar 

  • Trad A, Limam A, Bertrand D, Robit P (2013) Multi-scale analysis of an innovative flexible rockfall barrier. Rockfall Eng. doi:10.1002/9781118601532.ch9

    Google Scholar 

  • Tran PV, Maegawa K, Fukada S (2013a) Experiments and dynamic finite element analysis of a wire-rope rockfall protective fence. Rock Mech Rock Eng 46(5):1183–1198. doi:10.1007/s00603-012-0340-0

    Article  Google Scholar 

  • Tran PV, Maegawa K, Fukada S (2013b) Prototype of a wire-rope rockfall protective fence developed with three-dimensional numerical modeling. Comput Geotech 54:84–93. doi:10.1016/j.compgeo.2013.06.008

    Article  Google Scholar 

  • Verbeke F (2015). Energy dissipators in dynamic screens for rock retaining. Inchalam Bekaert Technical Report

  • Volkwein A, Gerber W (2011) Stronger and lighter—evolution of flexible rockfall protection systems. In: IABSE-IASS 2011 London Symposium Report: Taller, Longer, Lighter. Meeting growing demand with limited resources. The 35th Annual Symposium of IABSE. The 52nd Annual Symposium of IASS and incorporating the 6th International Conference on Space Structures. Zürich, IABSE. 5

  • Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren LKA, Gerber W, Jaboyedo M (2011) Rockfall characterisation and structural protection—a review. Nat Hazards Earth Syst Sci 11:2617–2651. doi:10.5194/nhess-11-2617-2011

    Article  Google Scholar 

  • Von Allmen HP (2004) European Patent No. 1 469 130 A1. Tafers. Switzerland

Download references

Acknowledgements

The authors would like to acknowledge Inchalam Bekaert for financial support and Malla Talud Cantabria for the information provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Castanon-Jano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castanon-Jano, L., Blanco-Fernandez, E., Castro-Fresno, D. et al. Energy Dissipating Devices in Falling Rock Protection Barriers. Rock Mech Rock Eng 50, 603–619 (2017). https://doi.org/10.1007/s00603-016-1130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1130-x

Keywords

Navigation