Advertisement

Rock Mechanics and Rock Engineering

, Volume 49, Issue 10, pp 4179–4207 | Cite as

ISRM Suggested Methods for Determining Thermal Properties of Rocks from Laboratory Tests at Atmospheric Pressure

  • Y. PopovEmail author
  • G. Beardsmore
  • C. Clauser
  • S. Roy
ISRM Suggested Method

Introduction

Thermal properties—thermal conductivity, thermal diffusivity, specific heat, volumetric heat capacity, and thermal effusivity—are fundamental physical properties of rocks and rock-forming minerals. They have clear physical meanings, and two of them (thermal conductivity and volumetric heat capacity) are used in Fourier’s heat conduction equation for homogeneous solid:
$$ c\rho \frac{\partial T}{\partial t} - \lambda \left( {\frac{{\partial^{2} T}}{{\partial x^{2} }} + \frac{{\partial^{2} T}}{{\partial y^{2} }} + \frac{{\partial^{2} T}}{{\partial z^{2} }}} \right) = F $$

Notes

Acknowledgments

Authors thank Prof. R. Ulusay for helpful discussions and advice during the manuscript preparation and revisions. Authors express also their thanks to reviewers A. Musson, R. Schellschmidt, Ömer Aydan, to the members of the ISRM Commission on Testing Methods E. Quadros, S. Kramadibrata, J. Muralha, to the ISRM Board members S. Read, D. Stead and M. He for their important scientific and technical recommendations and corrections during reviewing that helped to improve the manuscript.

References

  1. Andersson J, Strom A, Svemar C, Almen K-E, Ericsson LO (2000) What requirements does the KSB-3 repository make on the host rock? geoscientific suitability indicators and criteria for siting and site evaluation. Technical report, TR-00-12, April 2000Google Scholar
  2. Antriasian A (2010) The portable electronic divided-bar: a tool for measuring thermal conductivity of rock samples. In: Proceedings of the world geothermal congress 2010, Bali, Indonesia, pp 25–29 April 2010, 6 pp (on CD)Google Scholar
  3. ASTM Standard Test Method for Specific Heat of Rock and Soil (2008) ASTM D 4611-08Google Scholar
  4. Aydin A (2014) Upgraded ISRM suggested method for determining sound velocity by ultrasonic pulse transmission technique. In: Ulusay R (ed) The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Springer, Berlin, pp 95–99. doi: 10.1007/978-3-319-07713-0 Google Scholar
  5. Bayuk I, Popov Y, Parshin A (2011) New powerful tool for interpreting and predicting in reservoir geophysics: theoretical modeling as applied to laboratory measurements of thermal properties. In; Proceedings of the international symposium of the society of core analysts held in Austin (SCA), 18–21 September 2011, SCA2011-39, 12 pp (on CD)Google Scholar
  6. Beardsmore G, Cull J (2001) Crustal heat flow: a guide to measurement and modelling. Cambridge University Press, Cambridge 324 pp CrossRefGoogle Scholar
  7. Beck A (1988) Methods for determining thermal conductivity and thermal diffusivity. In: Haenel R, Rybach L, Stegena L (eds) Handbook on terrestrial heat flow density determination. Kluwer, Dordrecht, pp 87–124CrossRefGoogle Scholar
  8. Bieniawski ZT, Bernede M (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech Abstr 16(2):137–140CrossRefGoogle Scholar
  9. Birch F (1950) Flow of heat in the Front Range. Colorado. Bull Geol Soc Am 61:567–630CrossRefGoogle Scholar
  10. Blackwell J (1954) A transient-flow method for determination of thermal constants of insulating materials in bulk (part 1—theory). J Appl Phys 25:137–144CrossRefGoogle Scholar
  11. Burkhardt H, Honarmund H, Pribnow D (1990) First results of thermal conductivity measurements with a borehole tool for great depths. In: Bram K, Draxler J, Kessels W, Zoth G (eds) KTB report 90-6a. Springer Verlag, Hannover, pp 245–258Google Scholar
  12. Carslaw H, Jaeger J (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford 510 pp Google Scholar
  13. Chekhonin E, Parshin A, Pissarenko D, Popov Y, Romushkevich R, Safonov S, Spasennykh M, Chertenkov M, Stenin V (2012) When rocks get hot: thermal properties of reservoir rocks. Oilfield Rev 24(3):20–37Google Scholar
  14. Clauser C (2006) Geothermal energy. In: Heinloth K (ed) Landolt-Börnstein, group VIII: advanced materials and technologies, vol. 3: energy technologies, Subvol. C: renewable energies. Springer, Berlin, pp 493–604Google Scholar
  15. Clauser C (2011) Thermal storage and transport properties of rocks, In: heat capacity and latent heat. In: Gupta H (ed) Encyclopedia of solid earth geophysics, vol 2, 2nd edn. Springer, Berlin, pp 1423–1431CrossRefGoogle Scholar
  16. Fuchs S, Schuetz F, Foerster H-Y, Foerster A (2013) Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: correction charts and new conversion equations. Geothermics 47:40–52CrossRefGoogle Scholar
  17. Galson D, Wilson N, Schärli U, Rybach L (1987) A comparison of the divided-bar and QTM methods of measuring thermal conductivity. Geothermics 16(3):215–226CrossRefGoogle Scholar
  18. Goy L, Fabre D, Menard G (1996) Modelling of rock temperatures for deep alpine tunnel projects. Rock Mech Rock Eng 29:1–18. doi: 10.1007/BF01019936 CrossRefGoogle Scholar
  19. Grubbe K, Haenel R, Zoth G (1983) Determination of the vertical component of thermal conductivity by line source methods. Zeitblatt Geologie Paläontologie (Teil) 1H(1/2):49–56Google Scholar
  20. He Y (2005) Rapid thermal conductivity measurement with a hot disk sensor. Thermochim Acta 436(1–2):130–134CrossRefGoogle Scholar
  21. Huenges E, Burkhardt H, Erbas K (1990) Thermal conductivity profile of the KTB pilot corehole. Sci Drill 1:224–230Google Scholar
  22. Jacquot A, Vollmer F, Bayer B, Jaegle M, Ebling DG, Böttner H (2010) Thermal conductivity measurements on challenging samples by the 3 omega method. J Electron Mater 39(9):1621–1626CrossRefGoogle Scholar
  23. Jarrard R (2001) Petrophysics of core plugs from CRP-3 drillhole, Victoria Land Basin, Antarctica. Terra Antarct 8(3):143–150Google Scholar
  24. Jorand R, Vogt C, Marquart G, Clauser C (2013) Effective thermal conductivity of heterogeneous rocks from laboratory experiments and numerical modeling. J Geophys Res Solid Earth 118:5225–5235. doi: 10.1002/jgrb.50373 CrossRefGoogle Scholar
  25. Kukkonen I, Lindberg A (1995) Thermal conductivity of rocks at the TVO investigation sites Olkiluoto, Romuvaara and Kivetty. Nuclear waste commission of Finnish power companies, report YJT-95-08, 39 ppGoogle Scholar
  26. Kukkonen I, Suppala I, Korpisalo A, Koshkinen T (2007) Drill hole logging device TERO76 for determination of rock thermal properties. Posiva 2007-01. Geological Survey of Finland. Posiva OY, 63 ppGoogle Scholar
  27. Mottaghy D, Schellschmidt R, Popov Y, Clauser C, Kukkonen I, Nover G, Milanovsky S, Romushkevich R (2005) New heat flow data from the immediate vicinity of the Kola super-deep borehole: vertical variation in heat flow confirmed and attributed to advection. Tectonophysics 401:119–142CrossRefGoogle Scholar
  28. Parker W, Jenkins R, Butler C, Abbott G (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679–1685CrossRefGoogle Scholar
  29. Popov Y (1983) Theoretical models of the method of determination of the thermal properties of rocks on the basis of movable sources. Geol Razved (Geol Prospect) 9:97–105 (in Russian) Google Scholar
  30. Popov Y (1984) Peculiarities of the method of detailed investigations of rock thermal properties. Geol Razved (Geol Prospect) 4:76–84 (in Russian) Google Scholar
  31. Popov Y (1997) Optical scanning technology for non-destructive contactless measurements of thermal conductivity and diffusivity of solid matter. In: Giot M, Mayinger F, Celata GP (eds) Experimental heat transfer, fluid mechanics and thermodynamics. Proceedings of the 4th world congress on experimental heat transfer, fluid mechanics and thermodynamics, vol 1, Belgium, Brussels, pp 109–116Google Scholar
  32. Popov Y (2012) Evolution in the reliability of experimental geothermal data. In: Huddlestone-Holmes C, Gerner E (eds) Proceedings of the 2012 Australian geothermal energy conference. Sydney, pp 138–145Google Scholar
  33. Popov E (2015) Contactless measurements of thermal conductivity and thermal diffusivity of full-size core samples without samples optical characteristics alignment. Geol Razved (Geol Prospect) 4:44–51 (in Russian) Google Scholar
  34. Popov Y, Mandel A (1998) Geothermal study of anisotropic rock masses. Izv Phys Solid Earth 34(11):903–915Google Scholar
  35. Popov Y, Semionov V, Korosteliov V, Berezin V (1983) Non-contact evaluation of thermal conductivity of rocks with the aid of a mobile heat source. Izv Phys Solid Earth 19(7):563–567Google Scholar
  36. Popov Y, Berezin V, Semenov V, Korostelev V (1985) Complex detailed investigations of the thermal properties of rocks on the basis of a moving point source. Izv Phys Solid Earth 21(1):64–70Google Scholar
  37. Popov Y, Berezin V, Soloviov V, Romuschkevitch R, Korosteliov V, Kostiurin A, Kulikov A (1987) Thermal conductivity of minerals. Izv Phys Solid Earth 23(3):245–253Google Scholar
  38. Popov Y, Mandel A, Kostyurin A, Bangura A (1990) New methodological opportunities in investigations of thermal conductivity of anisotropic rocks and minerals. Geol Razved (Geol Prospect) 8:85–90 (in Russian) Google Scholar
  39. Popov Y, Rabe F, Bangura A (1993) Adequacy of theoretical and experimental models of the optical scanning method. Geol Razved (Geol Prospect) 6:65–72 (in Russian) Google Scholar
  40. Popov Y, Pevzner S, Pimenov V, Romushkevich R (1999a) New geothermal data from the Kola super-deep well SG-3. Tectonophysics 306:345–366CrossRefGoogle Scholar
  41. Popov Y, Pribnow D, Sass J, Williams C, Burkhardt H (1999b) Characterisation of rock thermal conductivity by high-resolution optical scanning. Geothermics 28:253–276CrossRefGoogle Scholar
  42. Popov Y, Tertychnyi V, Bayuk I, Korobkov D (2002) Rock thermal conductivity measurements on core cutting: method and experimental results. In: Proceedings of the international conference “The Earth’s Thermal Field and Related Research Methods”. Russian State Geological Prospecting University, Moscow, pp 23–28Google Scholar
  43. Popov Y, Pohl J, Romushkevich R, Tertychnyi V, Soffel H (2003a) Geothermal characteristics of the Ries impact structure. Geophys J Int 154:355–378CrossRefGoogle Scholar
  44. Popov Y, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003b) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure Appl Geophys 160:1137–1161CrossRefGoogle Scholar
  45. Popov Y, Spasennykh M, Miklashevskiy D, Parshin A, Stenin V, Chertenkov M, Novikov S, Tarelko N (2010) Thermal properties of formation from core analysis: evolution in measurement methods, equipment, and experimental data in relation to thermal EOR. In: CSUG/SPE 137639, 13 pp. doi:http://dx.doi.org/10.2118/137639-MS
  46. Popov Y, Parshin A, Chekhonin E, Gorobtsov E, Miklashevskiy D, Korobkov D, Suarez-Rivera R, Green S (2012) Rock heterogeneity from thermal profiling with optical scanning technique. In: ARMA 12-509, 8 pp. https://www.onepetro.org/conference-paper/ARMA-2012-509
  47. Popov Y, Chekhonin E, Parshin A, Law D, Pissarenko D, Miklashevskiy D, Popov E, Spasennykh M, Safonov S, Romushkevich R, Bayuk I, Danilenko A, Gerasimov I, Ursegov S, Konoplev Y, Taraskin E (2013a) Experimental investigations of spatial and temporal variations in rock thermal properties as necessary stage in thermal EOR. In; SPE 165474-MS, 19 pp. doi:http://dx.doi.org/10.2118/165474-MS
  48. Popov Y, Chekhonin E, Parshin A, Popov E, Miklashevskiy D (2013b) New hardware and methodical basis of thermal petrophysics as means to increase the efficiency of heavy oil recovery. Oil Gas Innov 4:52–58 (in Russian) Google Scholar
  49. Pribnow D, Sass J (1995) Determination of thermal conductivity from deep boreholes. J Geophys Res 100:9981–9994CrossRefGoogle Scholar
  50. Pribnow D, Williams C, Burkhardt H (1993) Log-derived estimate for thermal conductivity of crystalline rocks from the 4 km KTB Vorbohrung. Geophys Res Lett 20:1155–1158CrossRefGoogle Scholar
  51. Rybach L, Pfister M (1994) Temperature predictions and predictive temperatures in deep tunnels. Rock Mech Rock Eng (Hist Arch) 27:77–88CrossRefGoogle Scholar
  52. Rybach L, Wilhelm J, Gorhan H (2003) Geothermal use of tunnel waters—a Swiss specialty. In: International geothermal conference, Reykjavík, Session #5, Sept 2003Google Scholar
  53. Sass J, Lachenbruch A, Munroe R (1971) Thermal conductivity of rocks from measurements on fragments and its application to heat flow determinations. J Geophys Res 76:3391–3401CrossRefGoogle Scholar
  54. Sass J, Stone C, Munroe R (1984) Thermal conductivity determinations on solid rocka comparison between a steady-state divided-bar apparatus and a commercial transient line-source device. J Volcanol Geoth Res 20(1–2):145–153CrossRefGoogle Scholar
  55. Schoen J (1996) Physical properties of rocks: fundamentals and principles of petrophysics. Pergamon, Oxford 583 pp Google Scholar
  56. Sergeev O, Shashkov A (1983) Thermal physics of optical medium. Science and Technology, Moscow, 230 pp (in Russian)Google Scholar
  57. Sundberg J, Kukkonen I, Hälldahl L (2003) Comparison of thermal properties measured by different methods. SKB Rapp 3(18):37Google Scholar
  58. TeKa (2014) TK04 thermal conductivity meter brochure. TeKa, Berlin. Retrieved 06 Aug 2014. http://www.te-ka.de/images/teka/download/TK04-ThermalConductivityMeter.pdf
  59. Ulusay R (2012) The present and future of rock testing: highlighting the ISRM suggested methods. In: Proceedings of 7th Asian rock mechanics symposium. Seoul, South Korea, 15–19 Oct 2012, pp 106–132Google Scholar
  60. Wilhelm H (1990) A new approach to the borehole temperature relaxation method. Geophys J Int 103:469–481CrossRefGoogle Scholar
  61. Williams C, Anderson R (1990) Thermophysical properties of the Earth’s crust: in situ measurements from continental and ocean drilling. J Geophys Res 95:9209–9236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Skolkovo Institute of Science and TechnologyMoscowRussia
  2. 2.Schlumberger Moscow Research CenterMoscowRussia
  3. 3.School of Earth SciencesUniversity of MelbourneParkvilleAustralia
  4. 4.E.ON Energy Research CenterRWTH Aachen UniversityAachenGermany
  5. 5.CSIR-National Geophysical Research InstituteHyderabadIndia
  6. 6.Borehole Geophysics Research LaboratoryESSO-Ministry of Earth SciencesKaradIndia

Personalised recommendations