Skip to main content
Log in

An Experimental and Numerical Investigation of the Mechanical Behavior of Granite Gneiss Under Compression

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

E :

Elastic modulus

ν :

Poisson’s ratio

ɛ v :

Volumetric strain

p :

Mean stress

q :

Deviatoric stress

A :

Parameter of plastic yield surface

C 0 :

Parameter of plastic yield surface

s ij :

Deviatoric stress tensor

δ ij :

Second-order unit tensor

p 0 :

Normalizing coefficient for plastic yield surface

θ :

Lode’s angle

Y p d :

Thermodynamic state equation of damage evolution

d :

Damage variable

d c :

Maximum threshold of the damage variable

B d :

Parameter of damage criterion controlling the damage evolution rate

α p :

Plastic hardening function

α 0p :

Initial value of α p

γ p :

Equivalent plastic shear strain

B :

Plastic hardening parameter

η :

Parameter of plastic potential function

I 0 :

Variable of plastic potential function

λ s :

Plastic multiplier

References

  • Baud P, Schubnel A, Wong TF (2000) Dilatancy, compaction, and failure mode in Solnhofen limestone. J Geophys Res 105:19289–19303

    Article  Google Scholar 

  • Chen L, Rougelot T, Chen D, Shao JF (2009) Poroplastic damage modeling of unsaturated cement-based materials. Mech Res Commun 36:906–915

    Article  Google Scholar 

  • Chen L, Shao JF, Zhu QZ, Duveau G (2012) Induced anisotropic damage and plasticity in initially anisotropic sedimentary rocks. Int J Rock Mech Min 51:13–23

    Article  Google Scholar 

  • Chen L, Wang CP, Liu JF, Liu J, Wang J, Jia Y, Shao JF (2015) Damage and plastic deformation modeling of beishan granite under compressive stress conditions. Rock Mech Rock Eng 48:1623–1633

    Article  Google Scholar 

  • Dragon A, Mroz Z (1979) A continuum model for plastic-brittle behaviour of rock and concrete. Int J Eng Sci 17:121–137

    Article  Google Scholar 

  • Fujii Y, Kiyama T, Ishijima Y, Kodama J (1999) Circumferential strain behavior during creep tests of brittle rocks. Int J Rock Mech Min 36:323–337

    Article  Google Scholar 

  • Gambarotta L, Lagomarsino S (1993) A microcrack damage model for brittle materials. Int J Solids Struct 30:177–198

    Article  Google Scholar 

  • Ju JW (1989) On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int J Solids Struct 25:803–833

    Article  Google Scholar 

  • Kachanov ML (1982) A microcrack model of rock inelasticity. Part I: frictional sliding on microcracks; Part II: propagation of microcracks. Mech Mater 1:19–41

    Article  Google Scholar 

  • Lee H, Jeon S (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48:979–999

    Article  Google Scholar 

  • Liu L, Xu WY (2015) Experimental researches on long-term strength of granite gneiss. Adv Mater Sci Eng 2015:1–9

    Google Scholar 

  • Liu L, Xu WY, Wang HL, Wang W, Wang RB (2016a) Permeability evolution of granite gneiss during triaxial creep tests. Rock Mech Rock Eng. doi:10.1007/s00603-016-0999-8

    Google Scholar 

  • Liu L, Xu WY, Wang HL, Wang RB, Wang W (2016b) Experimental studies on hydro-mechanical properties of metamorphic rock under hydraulic pressures. Eur J Environ Civ Eng 20:45–59

    Article  Google Scholar 

  • Mazars J (1986) A description of micro-and macroscale damage of concrete structures. Eng Fract Mech 25:729–737

    Article  Google Scholar 

  • Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory-application to concrete. J Eng Mech 115:345–365

    Article  Google Scholar 

  • Murakami S, Kamiya K (1997) Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int J Mech Sci 39:473–486

    Article  Google Scholar 

  • Palchik V (2013) Is there link between the type of the volumetric strain curve and elastic constants, porosity, stress and strain characteristics? Rock Mech Rock Eng 46:315–326

    Article  Google Scholar 

  • Palchik V, Hatzor YH (2004) The influence of porosity on tensile and compressive strength of porous chalks. Rock Mech Rock Eng 37:331–341

    Article  Google Scholar 

  • Parisio F, Samat S, Laloui L (2015) Constitutive analysis of shale: a coupled damage plasticity approach. Int J Solids Struct 75:88–98

    Article  Google Scholar 

  • Pietruszczak S, Jiang J, Mirza FA (1988) An elastoplastic constitutive model for concrete. Int J Solids Struct 24:705–722

    Article  Google Scholar 

  • Shao JF, Zhu QZ, Su K (2003) Modeling of creep in rock materials in terms of material degradation. Comput Geotech 30:549–555

    Article  Google Scholar 

  • Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min 43:582–592

    Article  Google Scholar 

  • Tsang CF, Bernier F, Davies C (2005) Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal. Int J Rock Mech Min 42:109–125

    Article  Google Scholar 

  • Ulusay R, Hudson JA (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring. Iskitler, Ankara

    Google Scholar 

  • Walton G, Arzua J, Alejano LR, Diederichs MS (2015) A laboratory-testing-based study on the strength, deformability, and dilatancy of carbonate rocks at low confinement. Rock Mech Rock Eng 48:941–958

    Article  Google Scholar 

  • Wang HL, Xu WY, Shao JF, Skoczylas F (2014a) The gas permeability properties of low-permeability rock in the process of triaxial compression test. Mater Lett 116:386–388

    Article  Google Scholar 

  • Wang HL, Xu WY, Shao JF (2014b) Experimental researches on hydro-mechanical properties of altered rock under confining pressures. Rock Mech Rock Eng 47:485–493

    Article  Google Scholar 

  • Xie SY, Shao JF (2015) An experimental study and constitutive modeling of saturated porous rocks. Rock Mech Rock Eng 48:223–234

    Article  Google Scholar 

  • Yadav SK, Chakrapani GJ, Gupta MK (2008) An experimental study of dissolution kinetics of calcite, dolomite, leucogranite and gneiss in buffered solutions at temperature 25 and 5 C. Environ Geol 53:1683–1694

    Article  Google Scholar 

  • Yang SQ, Jing HW (2013) Evaluation on strength and deformation behavior of red sandstone under simple and complex loading paths. Eng Geol 164:1–17

    Article  Google Scholar 

  • Zhang Y, Shao JF, Xu WY, Zhao HB, Wang W (2015) Experimental and numerical investigations on strength and deformation behavior of cataclastic sandstone. Rock Mech Rock Eng 48:1083–1096

    Article  Google Scholar 

  • Zhu QZ, Shao JF (2015) A refined micromechanical damage–friction model with strength prediction for rock-like materials under compression. Int J Solids Struct 60:75–83

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11172090, 51479049 and 51209075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Xu, W.Y., Zhao, L.Y. et al. An Experimental and Numerical Investigation of the Mechanical Behavior of Granite Gneiss Under Compression. Rock Mech Rock Eng 50, 499–506 (2017). https://doi.org/10.1007/s00603-016-1067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1067-0

Keywords

Navigation