Skip to main content
Log in

Transgranular Crack Nucleation in Carrara Marble of Brittle Failure

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Understanding the microcrack nucleation is of a fundamental importance in the study of rock fracturing process. Due to variations in texture and mineralogy, different rocks may show different distinctive microcrack nucleation mechanisms. In order to understand the microcrack nucleation mechanisms in Carrara marble comprehensively, localized damage zones are artificially produced by loading specimens containing an array of en-echelon flaws in this study. Then, representative samples were cut from those loaded specimens and prepared for optical observation. Four types of microcrack nucleation mechanisms leading to the formation of transgranular cracks have been identified in Carrara marble. Type I and II mechanisms are favored by the distinctive polygonal shape of the crystal grains in Carrara marble. Local tensile stress concentration in these two mechanisms is attributed to grain sliding and divergent normal contact force, respectively. Type III mechanism is associated with the gliding along twin lamellae. The resultant tensile stress concentration could nucleate microcracks within the grain containing these lamellae or in the grain boundary. No microcracks in the adjoining grains were observed in this study. Our statistical analysis suggests that type III mechanism favors the nucleation of new cracks which are nearly perpendicular to the gently inclined twin lamellae and thus have a small angle with the maximum loading direction (about 15°). Type IV mechanism operates in grains failed mainly due to compressive stress rather than tensile stress concentration. Sets of parallel microcracks of this mechanism seem to be related to the crystallographic planes of calcite. The microcracking results also suggest that most of the grain boundaries in damaged zone have been cracked at the loading about 80 % of the specimen strength, while transgranular cracks begin to occur at that time and flourish after about 90 % loading of the strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alber M, Hauptfleisch U (1999) Generation and visualization of microfractures in Carrara marble for estimating fracture toughness, fracture shear and fracture normal stiffness. Int J Rock Mech Min Sci 36:1065–1071. doi:10.1016/S1365-1609(99)00069-6

    Article  Google Scholar 

  • Ashby MF, Sammis CG (1990) The damage mechanics of brittle solids in compression. Pure appl Geophys 133:489–521

    Article  Google Scholar 

  • Brace W, Paulding B, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71:3939–3953

    Article  Google Scholar 

  • Conrad Ii RE, Friedman M (1976) Microscopic feather fractures in the faulting process. Tectonophysics 33:187–198. doi:10.1016/0040-1951(76)90056-1

    Article  Google Scholar 

  • DiGiovanni A, Fredrich J, Holcomb D, Olsson W (2007) Microscale damage evolution in compacting sandstone. Geol Soc Lond Spec Publ 289:89–103

    Article  Google Scholar 

  • Dunn DE, LaFountain LJ, Jackson RE (1973) Porosity dependence and mechanism of brittle fracture in sandstones. J Geophys Res 78(14):2403–2417

    Article  Google Scholar 

  • Edmond J, Paterson M (1972) Volume changes during the deformation of rocks at high pressures. Int J Rock Mech Min Sci Geomech Abstr 9:161–182

    Article  Google Scholar 

  • Frank F, Lawn BR (1967) On the theory of Hertzian fracture. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society

  • Fredrich JT, Evans B, Wong TF (1989) Micromechanics of the brittle to plastic transition in Carrara marble. J Geophys Res 94:4129–4145

    Article  Google Scholar 

  • Friedman M, Logan JM (1970) Microscopic feather fractures. Geol Soc Am Bull 81:3417–3420

    Article  Google Scholar 

  • Gamond J (1987) Bridge structures as sense of displacement criteria in brittle fault zones. J Struct Geol 9:609–620

    Article  Google Scholar 

  • Kim Y-S, Peacock DCP, Sanderson DJ (2003) Mesoscale strike-slip faults and damage zones. J Struct Geol 25:793–812

    Article  Google Scholar 

  • Kranz RL (1979) Crack growth and development during creep of Barre granite. Int J Rock Mech Min Sci Geomech Abstr 16:23–35. doi:10.1016/0148-9062(79)90772-1

    Article  Google Scholar 

  • Lajtai E (1971) A theoretical and experimental evaluation of the Griffith theory of brittle fracture. Tectonophysics 11:129–156

    Article  Google Scholar 

  • Menéndez B, Zhu W, Wong T-F (1996) Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. J Struct Geol 18:1–16

    Article  Google Scholar 

  • Moore DE, Lockner DA (1995) The role of microcracking in shear-fracture propagation in granite. J Struct Geol 17:95–114

    Article  Google Scholar 

  • Nicksiar M, Martin CD (2013) Crack initiation stress in low porosity crystalline and sedimentary rocks. Eng Geol 154:64–76. doi:10.1016/j.enggeo.2012.12.007

    Article  Google Scholar 

  • Nolen-Hoeksema RC, Gordon RB (1987) Optical detection of crack patterns in the opening-mode fracture of marble. Int J Rock Mech Min Sci Geomech Abstr 24:135–144. doi:10.1016/0148-9062(87)91933-4

    Article  Google Scholar 

  • Olsson WA, Peng SS (1976) Microcrack Nucleation in Marble. Int J Rock Mech Min Sci Geomech Abstr 13:53–59

    Article  Google Scholar 

  • Rigopoulos I, Tsikouras B, Pomonis P, Hatzipanagiotou K (2011) Microcracks in ultrabasic rocks under uniaxial compressive stress. Eng Geol 117:104–113. doi:10.1016/j.enggeo.2010.10.010

    Article  Google Scholar 

  • Schedl A, Kronenberg AK, Tullis J (1986) Deformation microstructures of Barre granite: an optical, Sem and Tem study. Tectonophysics 122:149–164. doi:10.1016/0040-1951(86)90164-2

    Article  Google Scholar 

  • Seo YS, Jeong GC, Kim JS, Ichikawa Y (2002) Microscopic observation and contact stress analysis of granite under compression. Eng Geol 63:259–275. doi:10.1016/S0013-7952(01)00086-2

    Article  Google Scholar 

  • Sprunt ES, Brace WF (1974) Direct observation of microcavities in crystalline rocks. Int J Rock Mech Min Sci Geomech Abstr 11:139–150. doi:10.1016/0148-9062(74)92874-5

    Article  Google Scholar 

  • Tapponnier P, Brace W (1976) Development of stress-induced microcracks in Westerly granite. Int J Rock Mech Min Sci Geomech Abstr 13:103–112

    Article  Google Scholar 

  • Turner FJ, GRIGGS D, Heard H (1954) Experimental deformation of calcite crystals. Geol Soc Am Bull 65:883–934

    Article  Google Scholar 

  • Vajdova V, Zhu W, Natalie Chen T-M, T-f Wong (2010) Micromechanics of brittle faulting and cataclastic flow in Tavel limestone. J Struct Geol 32:1158–1169

    Article  Google Scholar 

  • Vajdova V, Baud P, Wu L, T-f Wong (2012) Micromechanics of inelastic compaction in two allochemical limestones. J Struct Geol 43:100–117. doi:10.1016/j.jsg.2012.07.006

    Article  Google Scholar 

  • Wong TF (1982) Micromechanics of faulting in westerly granite. Int J Rock Mech Min Sci Geomech Abstr 19:49–64. doi:10.1016/0148-9062(82)91631-X

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009) Crack coalescence in molded gypsum and Carrara marble: part 2—microscopic observations and interpretation. Rock Mech Rock Eng 42:513–545. doi:10.1007/s00603-008-0003-3

    Article  Google Scholar 

  • Wong TF, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. J Geophys Res 102:3009–3025

    Article  Google Scholar 

  • Zhang S, Paterson MS, Cox SF (2001) Microcrack growth and healing in deformed calcite aggregates. Tectonophysics 335:17–36. doi:10.1016/S0040-1951(01)00043-9

    Article  Google Scholar 

  • Zhu W, Baud P, Vinciguerra S, T-f Wong (2011) Micromechanics of brittle faulting and cataclastic flow in Alban Hills tuff. J Geophys Res. doi:10.1029/2010jb008046

    Google Scholar 

Download references

Acknowledgments

The research was supported by the Singapore Academic Research Fund Tier 1 Grant under project RG112/14 and the Nanyang Technological University Start Up Grant (M4080115.030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Ngai Yuen Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Wong, L.N.Y. & Maruvanchery, V. Transgranular Crack Nucleation in Carrara Marble of Brittle Failure. Rock Mech Rock Eng 49, 3069–3082 (2016). https://doi.org/10.1007/s00603-016-0976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-0976-2

Keywords

Navigation