Skip to main content
Log in

Determination of Dynamic Compressive and Tensile Behavior of Rocks from Numerical Tests of Split Hopkinson Pressure and Tension Bars

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

FEM-based numerical testing systems of the split Hopkinson pressure bar (SHPB) and the split Hopkinson tensile bar (SHTB) are established to study the characteristics of rock materials under dynamic compressive and tensile loadings. First of all, the accuracy and applicability of the numerical testing system are validated and calibrated through comparison between the laboratory measurements and the simulation results. Subsequently, the dynamic behavior of rock is analyzed in detail with the numerical testing system followed by the underlying physical mechanism. For the SHPB tests, the simulation results demonstrate that the incident waveform is determined by the striker length, the striker shape and the pulse shaper. The dynamic increase factor (DIF) of the rock specimen varies with different impact velocities, which is attributed to the strain rate effect. The rock specimen size and bar size also have effects on the DIF. In addition, the interfacial friction between the rock specimen and the bars cannot be ignored. For the SHTB tests, it is found that the incident waveform is dependent on the striker tube length and the striker tube thickness. In addition, similar to the SHPB tests, the impact velocity, rock specimen size and bar size all have strong effects on the rock dynamic tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Alves M, Karagiozova D, Micheli GB, Calle MAG (2012) Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen. Int J Impact Eng 49:130–141. doi:10.1016/j.ijimpeng.2012.04.005

    Article  Google Scholar 

  • Asprone D, Cadoni E, Prota A, Manfredi G (2009) Dynamic behavior of a Mediterranean natural stone under tensile loading. Int J Rock Mech Min Sci 46:514–520. doi:10.1016/j.ijrmms.2008.09.010

    Article  Google Scholar 

  • Bischoff PH (1991) Compressive behaviour of concrete at high strain rates. Mater Struct 24:425

    Article  Google Scholar 

  • Cadoni E, Solomos G, Albertini C (2009) Mechanical characterisation of concrete in tension and compression at high strain rate using a modified Hopkinson bar. Mag Concrete Res 61:221–230

    Article  Google Scholar 

  • Chen W, Song B (2011) Split Hopkinson (Kolsky) bar. Springer, New York

    Book  Google Scholar 

  • Chen XD, Wu SX, Zhou JK (2014) Experimental study on dynamic tensile strength of cement mortar using split Hopkinson pressure bar technique. J Mater Civ Eng 26:10. doi:10.1061/(asce)mt.1943-5533.0000926

    Google Scholar 

  • Cotsovos D, Pavlović M (2008) Numerical investigation of concrete subjected to high rates of uniaxial tensile loading. Int J Impact Eng 35:319–335

    Article  Google Scholar 

  • Dai F, Huang S, Xia K, Tan Z (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43:657–666

    Article  Google Scholar 

  • Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11:155–179. doi:10.1016/0022-5096(63)90050-4

    Article  Google Scholar 

  • Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41:40–46. doi:10.1007/bf02323102

    Article  Google Scholar 

  • Hao Y, Hao H, Zhang XH (2012) Numerical analysis of concrete material properties at high strain rate under direct tension. Int J Impact Eng 39:51–62. doi:10.1016/j.ijimpeng.2011.08.006

    Article  Google Scholar 

  • Hartley RS, Cloete TJ, Nurick GN (2007) An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test. Int J Impact Eng 34:1705–1728. doi:10.1016/j.ijimpeng.2006.09.003

    Article  Google Scholar 

  • Huang S, Chen R, Xia K (2010) Quantification of dynamic tensile parameters of rocks using a modified Kolsky tension bar apparatus. J Rock Mech Geotech Eng 2:162–168

    Article  Google Scholar 

  • Kolsky H (1949) An Investigation of the mechanical properties of materials at very high rates of loading. Proc R Phys Soc B 62:676

    Article  Google Scholar 

  • Kolsky H (1963) Stress wave in solids. Dover, New York

    Google Scholar 

  • Li QM, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct 40:343–360

    Article  Google Scholar 

  • Li XB, Lok TS, Zhao J, Zhao PJ (2000) Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress–strain curves for rocks. Int J Rock Mech Min Sci 37:1055–1060

    Article  Google Scholar 

  • Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38:21–39

    Article  Google Scholar 

  • Li QM, Lu YB, Meng H (2009) Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numerical simulations. Int J Impact Eng 36:1335–1345. doi:10.1016/j.ijimpeng.2009.04.010

    Article  Google Scholar 

  • Li XB, Zou Y, Zhou ZH (2014) Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method. Rock Mech Rock Eng 47:1693–1709. doi:10.1007/s00603-013-0484-6

    Article  Google Scholar 

  • Li G, Tang C-A (2015) A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock. Int J Rock Mech Min Sci 74:133–150. doi:10.1016/j.ijrmms.2014.12.006

    Article  Google Scholar 

  • Liu JB, Yao L, Wang D (1994) A method for calculating the dynamic effect of dynamic and static friction on a contactable crack. Acta Mech Sin 26:494–502 (in Chinese)

    Google Scholar 

  • Lu YB, Li QM (2011) About the dynamic uniaxial tensile strength of concrete-like materials. Int J Impact Eng 38:171–180

    Article  Google Scholar 

  • Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension. ACI Mater J 95:735–739

    Google Scholar 

  • Naghdabadi R, Ashrafi MJ, Arghavani J (2012) Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test. Mater Sci Eng A Struct Mater Prop Microstruct Process 539:285–293. doi:10.1016/j.msea.2012.01.095

    Article  Google Scholar 

  • Pan Y, Chen W, Song B (2005) Upper limit of constant strain rates in a split Hopkinson pressure bar experiment with elastic specimens. Exp Mech 45:440–446. doi:10.1177/0014485105057760

    Article  Google Scholar 

  • Ravichandran G, Subhash G (1994) Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc 77:263–267. doi:10.1111/j.1151-2916.1994.tb06987.x

    Article  Google Scholar 

  • Samanta SK (1971) Dynamic deformation of aluminium and copper at elevated temperatures. J Mech Phys Solids 19:117–135. doi:10.1016/0022-5096(71)90023-8

    Article  Google Scholar 

  • Tang CA (1997) Numerical simulation of progressive rock failure and associated seismicity. Int J Rock Mech Min Sci 34:249–261. doi:10.1016/S0148-9062(96)00039-3

    Article  Google Scholar 

  • Tang CA, Liu H, Lee PKK, Tsui Y, Tham LG (2000a) Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part I: effect of heterogeneity. Int J Rock Mech Min Sci 37:555–569

    Article  Google Scholar 

  • Tang CA, Tham LG, Lee PKK, Tsui Y, Liu H (2000b) Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part II: constraint, slenderness and size effect. Int J Rock Mech Min Sci 37:571–583. doi:10.1016/S1365-1609(99)00122-7

    Article  Google Scholar 

  • Tang SB, Tang CA (2012) Numerical studies on tunnel floor heave in swelling ground under humid conditions. Int J Rock Mech Min Sci 55:139–150. doi:10.1016/j.ijrmms.2012.07.007

    Google Scholar 

  • Tang SB, Tang CA (2015) Crack propagation and coalescence in quasi-brittle materials at high temperatures. Eng Fract Mech 134:404–432

    Article  Google Scholar 

  • Tang SB, Tang CA, Liang ZZ, Zhang YF (2011) Influence of heterogeneity on strength and failure characterization of cement-based composite subjected to uniform thermal loading. Constr Build Mater 25:3382–3392. doi:10.1016/j.conbuildmat.2011.03.029

    Article  Google Scholar 

  • Trautmann A, Siviour CR, Walley SM, Field JE (2005) Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar. Int J Impact Eng 31:523–544. doi:10.1016/j.ijimpeng.2004.02.007

    Article  Google Scholar 

  • Xia K, Nasseri M, Mohanty B, Lu F, Chen R, Luo S (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min Sci 45:879–887

    Article  Google Scholar 

  • Zencker U, Clos R (1999) Limiting conditions for compression testing of flat specimens in the split Hopkinson pressure bar. Exp Mech 39:343–348. doi:10.1007/bf02329815

    Article  Google Scholar 

  • Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47:1411–1478. doi:10.1007/s00603-013-0463-y

    Article  Google Scholar 

  • Zhang M, Wu HJ, Li QM, Huang FL (2009) Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments. Int J Impact Eng 36:1327–1334. doi:10.1016/j.ijimpeng.2009.04.009

    Article  Google Scholar 

  • Zhao J, Li HB, Wu MB, Li TJ (1999) Dynamic uniaxial compression tests on a granite. Int J Rock Mech Min Sci 36:273–277. doi:10.1016/s0148-9062(99)00008-x

    Google Scholar 

  • Zhou Y (2011) Experimental study of rock Brizilian disk test under coupled static–dynamic loads. Central South Univ, Changsha (in Chinese)

    Google Scholar 

  • Zhu WC, Tang CA (2004) Micromechanical model for simulating the fracture process of rock. Rock Mech Rock Eng 37:25–56

    Article  Google Scholar 

  • Zhu WC, Li ZH, Zhu L, Tang CA (2010) Numerical simulation on rockburst of underground opening triggered by dynamic disturbance. Tunn Undergr Space Tech 25:587–599. doi:10.1016/j.tust.2010.04.004

    Article  Google Scholar 

  • Zhu WC, Bai Y, Li XB, Niu LL (2012) Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests. Int J Impact Eng 49:142–157. doi:10.1016/j.ijimpeng.2012.04.002

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Research Grant Council (No. 25201814), the National Natural Science Foundation of China (No. 41402241) and the National Basic Research Program of China (No. 2014CB047103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Z.Y., Zhu, J.B., Xia, K.W. et al. Determination of Dynamic Compressive and Tensile Behavior of Rocks from Numerical Tests of Split Hopkinson Pressure and Tension Bars. Rock Mech Rock Eng 49, 3917–3934 (2016). https://doi.org/10.1007/s00603-016-0954-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-0954-8

Keywords

Navigation