Skip to main content
Log in

Swelling of Clay-Sulfate Rocks: A Review of Processes and Controls

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The swelling of clay-sulfate rocks is a major threat in tunnel engineering, causing serious damage to tunnels and producing high additional costs during tunnel construction and operation. The swelling problem is also known from other geotechnical fields, such as road and bridge construction, and in conjunction with geothermal drillings. The planning of counter measures that would stop or minimize the swelling is extremely difficult, and it is currently impossible to predict the swelling behavior of an actual geotechnical project. One of the reasons is our limited knowledge of the processes involved in the swelling of clay-sulfate rocks, and of the geological, mineralogical, chemical, hydraulic and mechanical controls of the swelling. This article presents a literature review of processes in swelling clay-sulfate rocks and associated controls. Numerical models that aim at simulating the processes and controls are also included in this review, and some of the remaining open questions are pointed out. By focusing on process-related work in this review, the article intends to stimulate further research across disciplines in the field of swelling clay-sulfate rocks to finally get a step further in managing the swelling problem in geotechnical projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alonso EE (2011) Crystal growth and geotechnics. Paper presented at the Arrigo Croce Lecture, Rome, Italy, 15 Dec 2011, pp 46

  • Alonso EE, Olivella S (2008) Modelling tunnel performance in expansive gypsum claystone. In: 12th International conference on computer methods and advances in geomechanics, Goa 2008, pp 891–910

  • Alonso EE, Ramon A (2013) Heave of a railway bridge induced by gypsum crystal growth: field observations. Geotechnique 63(9):707–719

    Article  Google Scholar 

  • Alonso EE, Berdugo IR, Ramon A (2013) Extreme expansive phenomena in anhydritic-gypsiferous claystone: the case of Lilla tunnel. Geotechnique 63:584–612

    Article  Google Scholar 

  • Amann F, Kaiser PK, Steiner W (2010) Triggering swelling potential of anhydrite clay rocks by brittle failure processes. In: European rock mechanics symposium EUROCK 2010, Lausanne, pp 339–342

  • Amann F, Ündül O, Kaiser PK (2014) Crack initiation and crack propagation in heterogeneous sulfate-rich clay rocks. Rock Mech Rock Eng 47(5):1849–1865

    Article  Google Scholar 

  • Amstad C, Kovári K (2001) Untertagebau in quellfähigem Fels (Underground construction in swelling rock). Final report research assignment 52/94 of the Swiss Federal Roads Office

  • Anagnostou G (1992) Untersuchungen zur Statik des Tunnelbaus in quellfähigem Gebirge (Investigations of tunnel statics in swelling rock). PhD thesis, ETH Zurich

  • Anagnostou G (1993) A model for swelling rock in tunnelling. Rock Mech Rock Eng 26:307–331

    Article  Google Scholar 

  • Anagnostou G (1995) Seepage flow around tunnels in swelling rock. Int J Numer Anal Meth Geomech 19(10):705–724

    Article  Google Scholar 

  • Anagnostou G, Pimentel E, Serafeimidis K (2010) Swelling of sulphatic claystones: some fundamental questions and their practical relevance. Geomech Tunn 3(5):567–572

    Article  Google Scholar 

  • Anagnostou G, Serafeimidis K, Vrakas A (2015) On the occurrence of anhydrite in the sulphatic claystones of the Gypsum Keuper. Rock Mech Rock Eng 48:1–13

    Article  Google Scholar 

  • Azam S (2007) Study on the geological and engineering aspects of anhydrite/gypsum transition in the Arabian Gulf coastal deposits. Bull Eng Geol Environ 66(2):177–185

    Article  Google Scholar 

  • Bacharach W (2007) Tunnel sections in anhydride bearing Gypsum Keuper, planned support principles for the tunnels of the project Stuttgart 21. Geotechnik 30(4):231–239

    Google Scholar 

  • Barla M (2008) Numerical simulation of the swelling behaviour around tunnels based on special triaxial tests. Tunn Undergr Space Technol 23(5):508–521

    Article  Google Scholar 

  • Bellwald P, Einstein HH (1987) Elasto-plastic constitutive model. In: ISRM 6th international congress on rock mechanics, Montreal, Canada, 30 Aug–10 Sept 1987. Balkema, pp 1489–1492

  • Benz T, Wehnert M (2010) Schadensfall Staufen. Berechnungen der zeitlichen Entwicklung der Hebungsprozesse (Case of Staufen. Calculations of temporal development of the heave processes). Unpublished report

  • Benz T, Wehnert M (2012) Schadensfall Staufen im Breisgau. Zweiter Bericht zu den Berechnungen der zeitlichen Entwicklung der Hebungsprozesse (Case of Staufen. Second report on calculations of the temporal development of the heave processes). Unpublished report

  • Berdugo IR, Alonso EE, Romero E, Gens A (2009a) Tunnelling and swelling in Triassic sulphate-bearing rocks. Part I: case studies from Baden-Württemberg. Revista Epsilon 12:1–17

    Google Scholar 

  • Berdugo IR, Alonso EE, Romero E, Gens A (2009b) Tunnelling and swelling in Triassic sulphate-bearing rocks. Part II – Case studies from Jura Mountains. Revis Epsil 12:18–30

    Google Scholar 

  • Blount CW, Dickson FW (1973) Gypsum–anhydrite equilibria in systems CaSO4–H2O and CaCO4–NaCl–H2O. Am Mineral 58(3–4):323–331

    Google Scholar 

  • Bons PD, Jessell MW (1997) Experimental simulation of the formation of fibrous veins by localised dissolution-precipitation creep. Mineral Mag 61(1):53–63

    Article  Google Scholar 

  • Butscher C, Einstein HH, Huggenberger P (2011a) Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks. Water Resour Res 47:W11520

    Google Scholar 

  • Butscher C, Huggenberger P, Zechner E (2011b) Impact of tunneling on regional groundwater flow and implications for swelling of clay-sulfate rocks. Eng Geol 117(3–4):198–206

    Article  Google Scholar 

  • Butscher C, Huggenberger P, Zechner E, Einstein HH (2011c) Relation between hydrogeological setting and swelling potential of clay-sulfate rocks in tunneling. Eng Geol 122(3–4):204–214

    Article  Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028

    Article  Google Scholar 

  • Chevalier G, Diamond L, Leu W (2010) Potential for deep geological sequestration of CO2 in Switzerland: a first appraisal. Swiss J Geosci 103(3):427–455

    Article  Google Scholar 

  • Correns CW (1949) Growth and dissolution of crystals under linear pressure. Discuss Faraday Soc 5:267–271

    Article  Google Scholar 

  • Corti HR, Fernandez-Prini R (1984) Thermodynamics of solution of gypsum and anhydrite in water over a wide temperature range. Can J Chem 62:484–488

    Article  Google Scholar 

  • DIN EN 196-6 (1990) Prüfverfahren für Zement, Bestimmung der Mahlfeinheit (Methods of testing cement, determination of fineness). Deutsches Institut für Normung e. V., Beuth, Berlin

  • Einstein HH (1996) Tunnelling in difficult ground: swelling behaviour and identification of swelling rocks. Rock Mech Rock Eng 29(3):113–124

    Article  Google Scholar 

  • Fabbri S, Madonna C, Zappone A (2013) Permeability and seismic velocities in CO2 carbonates reservoir: the laboratory insight. International Workshop on Geomechanics and Energy: The Ground as Energy Source and Storage

  • Fecker E (1995) Untersuchungen von Schwellvorgängen und Erprobung von Auskleidungskonzepten beim Freudensteintunnel (Investigations of swelling processes and test of design concepts at the Freudenstein tunnel). Taschenbuch für den Tunnelbau 1996

  • Flatt RJ, Scherer GW (2008) Thermodynamics of crystallization stresses in DEF. Cem Concr Res 38:325–336

    Article  Google Scholar 

  • Flückiger A (1994) Anhydritquellung. International meeting for young researchers in applied geology, Lausanne, Switzerland, pp 103–107

  • Flückiger A, Nüesch R, Madsen FT (1994) Anhydritquellung. In: Kohler EE (ed) Jahrestagung DGGT, Regensburg, Germany, 13–14 September 1994. Berichte der Deutschen Ton- und Tonmineralgruppe. Deutsche Ton- und Tonmineralgruppe DTTG, pp 146–153

  • Goldscheider N, Bechtel TD (2009) Editors’ message: the housing crisis from underground-damage to a historic town by geothermal drillings through anhydrite, Staufen, Germany. Hydrogeol J 17(3):491–493

    Article  Google Scholar 

  • Grimm M, Stober I, Kohl T, Blum P (2014) Schadensfallanalyse von Erdwärmesondenbohrungen in Baden-Württemberg (Damage event analysis of drilling borehole heat exchangers in Baden-Württemberg, Germany). Grundwasser 19:275–286

    Article  Google Scholar 

  • Grob H (1972) Schwelldruck im Belchentunnel (Swelling pressure in the Belchen tunnel). In: International symposium for tunneling, Luzern, Switzerland, 11–14 September 1992, pp 99–119

  • Hardie LA (1967) The gypsum-anhydrite equilibrium at one atmosphere pressure. Am Mineral 52:171–200

    Google Scholar 

  • Hauber L, Jordan P, Madsen FT, Nüesch R, Vögtli B (2005) Tonminerale und Sulfate als Ursache für druckhaftes Verhalten von Gesteinen: Ursachen und Wirkungen des Quellvorganges (Clay minerals and sulfates as cause of rock swelling: causes and effects of the swelling process). Geologisch-palaeontologisches Institut der Universität Basel, Switzerland

    Google Scholar 

  • Heidkamp H, Katz C (2002) Soils with swelling potential: proposal of a final state formulation within an implicit integration scheme and illustrative FE-calculations. In: Mang HA, Rammerstorfer FG, Eberhardsteiner J (eds) 5th World Congress on Computational Mechanics. Austria, Vienna

    Google Scholar 

  • Heidkamp H, Katz C (2004) The swelling phenomenon of soils: Proposal of an efficient continuum modelling approach. In: Schubert W (ed) EUROCK 2004 & 53rd Geomechanics Colloquium, Salzburg, Austria, October 6th–8th 2004, VGE

  • Henke KF, Kaiser W (1975) Zusammenfassung und Deutung der Ergebnisse in Bezug auf Sohlhebungen beim Tunnelbau im Gipskeuper (Summary and interpretation of results with respect to floor heaves in tunneling in the Gipskeuper formation). In: Henke KF, Krause H, Müller L, Kirchmayer M, Einfalt HC, Lippmann F (eds) Sohlhebungen beim Tunnelbau im Gipskeuper (Floor heaves in tunneling in the Gipskeuper formation). Ministerium für Wirtschaft, Mittelstand und Verkehr Baden-Württemberg, Stuttgart, pp 185–195

    Google Scholar 

  • Henke KF, Kaiser W, Nagel D (1975) Geomechanische Untersuchungen im Gipskeuper (Geomechanical investigations in the Gipskeuper formation). In: Henke KF, Krause H, Müller L, Kirchmayer M, Einfalt HC, Lippmann F (eds) Sohlhebungen beim Tunnelbau im Gipskeuper (Floor heaves in tunneling in the Gipskeuper formation). Ministerium für Wirtschaft, Mittelstand und Verkehr Baden-Württemberg, Stuttgart, pp 149–184

    Google Scholar 

  • Hill AE (1937) The transition temperature of gypsum to anhydrite. J Am Chem Soc 59(11):2242–2244

    Article  Google Scholar 

  • Huder J, Amberg G (1970) Quellung in Mergel, Opalinuston und Anhydrit (Swelling in marl, Opalinus clay and anhydrite). Schweizer Bauzeitung 88(43):975–980

    Google Scholar 

  • Innorta G, Rabbi E, Tomadin L (1980) The gypsum-anhydrite equilibrium by solubility measurements. Geochim Cosmochim Acta 44(12):1931–1936

    Article  Google Scholar 

  • IPCC (2005) Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press, New York 440 pp

    Google Scholar 

  • ISRM (1999) Suggested methods for laboratory testing of swelling rocks. Int J Rock Mech Min Sci 36(3):291–306

    Article  Google Scholar 

  • Jeschke AA, Dreybrodt W (2002) Pitfalls in the determination of empirical dissolution rate equations of minerals from experimental data and a way out: an iterative procedure to find valid rate equations, applied to Ca-carbonates and –sulphates. Chem Geol 192(3–4):183–194

    Article  Google Scholar 

  • Jeschke AA, Vosbeck K, Dreybrodt W (2001) Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochim Cosmochim Acta 65(1):27–34

    Article  Google Scholar 

  • Kahr G, Krähenbühl F, Müller-Vonmoos M (1985) Ionendiffusion in hochverdichtetem Bentonit (Ion diffusion in highly compacted bentonite). Nagra Technical Report 85–23

  • Kirschke D (1995) Neue Versuchstechniken und Erkenntnisse zum Anhydritschwellen (New experimental techniques and insights in anhydrite swelling). Taschenbuch für den Tunnelbau 1996, Verlag Glückauf, 203–225

  • Kleinert K, Einsele G (1978) Sohlhebungen in Straßeneinschnitten im anhydrit-führenden Gipskeuper (Trias, SW Deutschland) (Floor heaves in road cuts in anhydrite-bearing Gipskeuper (Triassic, SW Germany). Berichte 3. Nationale Tagung über Felsmechanik, Aachen 1978:103–124

    Google Scholar 

  • Kovári K, Chiaverio F (2007) Modular yielding support for tunnels in heavily swelling rock. In: Proceedings STUVA conference 07, Cologne, Germany, 26–29 Nov 2007

  • Krähenbühl F, Stöckli HF, Brunner F, Kahr G, Müller- Vonmoos M (1987) Study of the water-bentonite system by vapour adsorption, immersion calorimetry and X-ray techniques: I. Micropore volumes and internal surface areas following Dubinin’s theory. Clay Miner 22(1):1–9

    Article  Google Scholar 

  • Kulhawy FH, Beech JF, Trautmann CH (1989) Influence of geologic development on horizontal stress in soil. Foundation engineering: current principles and practices. ASCE, Evanston, IL, pp 43–57

    Google Scholar 

  • Lemieux J-M (2011) Review: the potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeol J 19(4):757–778

    Article  Google Scholar 

  • LGRB (2010) Geologische Untersuchungen von Baugrundhebungen im Bereich des Erdwärmesondenfeldes beim Rathaus in der historischen Altstadt von Staufen i. Br. (Geological Investigations of ground heaves in the area of the ground source heat exchanger field at the town hall in the historic town center of Staufen i. Br.). Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg, Freiburg i. Br., Germany

  • Lippmann F (1976) Corrensite, a swelling clay mineral, and its influence on floor heave in tunnels in the Keuper formation. Bull Int Assoc Eng Geol 13:65–68

    Article  Google Scholar 

  • MacDonald GJF (1953) Anhydrite-gypsum equilibrium relations. Am J Sci 251:884–898

    Article  Google Scholar 

  • Madsen FT, Müller-Vonmoos M (1989) The swelling behaviour of clays. Appl Clay Sci 4(2):143–156

    Article  Google Scholar 

  • Madsen FT, Nüesch R (1990) Langzeitquellverhalten von Tongesteinen und tonigen Sulfatgesteinen (Long-term swelling behavior of clay rocks and argillaceous sulfate rocks). Institut für Grundbau und Bodenmechanik der ETH Zürich, Zurich

    Google Scholar 

  • Madsen FT, Nüesch R (1991) The swelling behaviour of clay-sulfate rocks. In: Wittke W (ed) 7th international congress on rock mechanics aachen, Germany, 16–20 Sep 1991. Balkema, Rotterdam, pp 285–288

  • Madsen FT, Flückiger A, Hauber L, Jordan P, Voegtli B (1995) New investigations on swelling rocks in the Belchen tunnel, Switzerland. In: Fujii T (ed) 8th International Congress on Rock Mechanics, Tokyo, Japan, 22–30 Sept 1995. Balkema Publishers, A.A./Taylor & Francis, The Netherlands, pp 263–267

  • Marsal D (1952) Der Einfluß des Druckes auf das system CaSO4–H2O (Influence of pressure on the system CaSO4–H2O). Heidelberger Beiträge zur Mineralogie und Petrographie 3(4):289–296

    Google Scholar 

  • Marshall WL, Slusher R (1966) Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions, 0°–110°. J Phys Chem 70(12):4015–4027

    Article  Google Scholar 

  • Means WD, Li T (2001) A laboratory simulation of fibrous veins: some first observations. J Struct Geol 23(6–7):857–863

    Article  Google Scholar 

  • Müller-Salzburg L (1978) Der Felsbau. Dritter Band: Tunnelbau (Rock engineering. Third Volume: Tunneling). Enke, Stuttgart

  • Murray RC (1964) Origin and diagenesis of gypsum and anhydrite. J Sediment Res 34(3):512–523

    Google Scholar 

  • NAGRA (2002) Projekt opalinuston: synthese der geowissenschaftlichen Untersuchungsergebnisse (Project opalinus clay – synthesis of results of geoscientific investigations). NAGRA Technical Report Series, NTB 02-03, NAGRA, Wettingen, Switzerland

  • Neuzil CE (2003) Hydromechanical coupling in geologic processes. Hydrogeol J 11(1):41–83

    Article  Google Scholar 

  • Noher HP, Meyer M, Zeh RM (2010) The anhydrite surface: cause of problems in tunnel constructions (new results based on measurements and observations). Rock Mechanics in Civil and Environmental Engineering, pp 343–346

  • Noiriel C, Renard F, Doan ML, Gratier JP (2010) Intense fracturing and fracture sealing induced by mineral growth in porous rocks. Chem Geol 269(3–4):197–209

    Article  Google Scholar 

  • Nüesch R, Ko SC (2000) Influence of mineralogical composition to experimental swelling behaviour of shaley anhydrite rocks. In: Rammelmair D, Mederer J, Oberthür T, Heimann RB, Pentinghaus H (eds) ICAM 2000: 6th international congress on applied mineralogy, Göttingen, Germany, 17–19 July 2000. Balkema, pp 611–616

  • Nüesch R, Madsen FT, Steiner W (1995) Long time swelling of anhydritic rocks: Mineralogical and microstructural evaluation. In: Fujii T (ed) 8th International congress on rock mechanics, Tokyo, Japan, 1995. Balkema Publishers, A.A./Taylor & Francis, Delft, pp 133–138

    Google Scholar 

  • Oldecop L, Alonso E (2012) Modelling the degradation and swelling of clayey rocks bearing calcium-sulphate. Int J Rock Mech Min Sci 54:90–102

    Google Scholar 

  • Olivella S, Carrera J, Gens A, Alonso EE (1994) Nonisothermal multiphase flow of brine and gas through saline media. Transp Porous Media 15:271–293

    Article  Google Scholar 

  • Olivella S, Gens A, Carrera J, Alonso EE (1996) Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng Comput (Swansea, Wales) 13:87–112

    Article  Google Scholar 

  • Partridge EP, White AH (1929) The solubility of calcium sulfate from 0 to 200°. J Am Chem Soc 51(2):360–370

    Article  Google Scholar 

  • Pierau B, Kiehl JR (1995) Widerstands- und Ausweichprinzip: Vergleich zweier Entwurfsmethoden für Tunnelbauten in quellfähigem Gebirge (Resistance and yield principle: comparison of two design approaches for tunnels in swelling rock). Taschenbuch für den Tunnelbau 1996. Verlag Glückauf, Essen, pp 226–247

    Google Scholar 

  • Pimentel E (2007a) A laboratory testing technique and a model for the swelling behavior of anhydritic rock. In: Paper presented at the 11th Congress of the International Society for Rock Mechanics, Lisbon, 9–13 July 2007, pp 143–146

  • Pimentel E (2007b) Quellverhalten von Gesteinen—Erkenntnisse aus Laboruntersuchungen (Swelling of rocks—insights from laboratory testing). In: Frühjahrstagung der Schweizerischen Gesellschaft für Boden- und Felsmechanik, Fribourg, Switzerland, 27 April 2007. Mitteilungen der Schweizerischen Gesellschaft für Boden- und Felsmechanik 154, pp 11–20

  • Ramon A (2014) Expansion mechanisms in sulphated rocks and soils. PhD thesis, Universitat Politècnica de Catalunya, Barcelona

  • Ramon A, Alonso EE (2013) Heave of a railway bridge: modelling gypsum crystal growth. Géotechnique 63:720–732

    Article  Google Scholar 

  • Ramon A, Alonso EE (2014) Crystal growth and soil expansion: The role of interfacial pressure and pore structure. In: Khalili N, Russell AR, Khoshghalb A (eds) Unsaturated soils: research and applications—proceedings of the 6th international conference on unsaturated soils, UNSAT 2014, Sidney, Australia, Juliy 2–4 2014, CRC Press, pp 875–881

  • Rauh F, Spaun G, Thuro K (2006) Assessment of the swelling potential of anhydrite in tunnelling projects. In: Culshaw M, Reeves H, Spink T, Jefferson I (eds) 10th IAEG international congress, Nottingham, UK, September 6–10, 2006. IAEG Engineering geology for tomorrow´s cities, paper No 473, 8 pp

  • Ruch C, Wirsing G (2013) Erkundung und Sanierungsstrategien im Erdwärmesonden-Schadensfall Staufen i. Br (Exploration and rehabilitation strategies in case of damaging geothermal heat exchangers in Staufen i. Br.). Geotechnik 36(3):147–159

    Article  Google Scholar 

  • Rutqvist J, Stephansson O (2003) The role of hydrochemical coupling in fractured rock engineering. Hydrogeol J 11(1):7–40

    Article  Google Scholar 

  • Sahimi M (2011) Flow and transport in porous media and fractured rock: from classical methods to modern approaches, 2nd edn. Wiley-VCH, Weinheim 709 pp

    Book  Google Scholar 

  • Sahores J (1962) Contribution a l’etude des phenomenes mechaniques accompagnant l’hydratation de l’anhydrite. PhD thesis, Toulouse

  • Sass I, Burbaum U (2010) Damage to the historic town of Staufen (Germany) caused by geothermal drillings through anhydrite-bearing formations. Acta Carsol 39(2):233–245

    Article  Google Scholar 

  • Sass I, Burbaum U (2012) Geothermische Bohrungen in Staufen im Breisgau: schadensursachen und Perspektiven (Geothermal drillings in Staufen im Breisgau: causes of damage and perspectives). Geotechnik 35(3):198–205

    Article  Google Scholar 

  • Schädlich B, Marcher T, Schweiger HF (2013) Application of a constitutive model for swelling rock to tunnelling. Geotech Eng 44:47–54

    Google Scholar 

  • Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624

    Article  Google Scholar 

  • Schlenker B (1971) Petrographische Untersuchungen am Gipskeuper und Lettenkeuper von Stuttgart (Petrographic investigations of the Gipskeuper and Lettenkeuper formations in Stuttgart/Germany). Oberrheinische Geologische Abhandlungen 20:69–102

    Google Scholar 

  • Serafeimidis K, Anagnostou G (2012) On the kinetics of the chemical reactions underlying the swelling of anhydritic rocks. In: Proceedings EUROCK 2012—The 2012 ISRM international symposium, Stockholm, Sweden, 28–30 May 2012

  • Serafeimidis K, Anagnostou G (2014) On the crystallisation pressure of gypsum. Environ Earth Sci 72(12):4985–4994

    Article  Google Scholar 

  • Serafeimidis K, Anagnostou G (2015) The solubilities and thermodynamic equilibrium of anhydrite and gypsum. Rock Mech Rock Eng 48(1):15–31

    Article  Google Scholar 

  • Serafeimidis K, Anagnostou G, Vrakas A (2015) Scale effects in relation to swelling pressure in anhydritic claystones. In: Geomechanics from micro to macro—proceedings of the TC105 ISSMGE international symposium on geomechanics from micro to macro, IS-Cambridge 2014, pp 795–800

  • Steiger M (2005a) Crystal growth in porous materials - I: the crystallization pressure of large crystals. J Cryst Growth 282(3–4):455–469

    Article  Google Scholar 

  • Steiger M (2005b) Crystal growth in porous materials - II: influence of crystal size on the crystallization pressure. J Cryst Growth 282(3–4):470–481

    Article  Google Scholar 

  • Steiner W (1993) Swelling rock in tunnels - rock characterization, effect of horizontal stresses and construction procedures. Int J Rock Mech Min Sci Geomech Abstracts 30(4):361–380

    Article  Google Scholar 

  • Steiner W (2007) Influence of horizontal stresses on the swelling behaviour of gypsum keuper. Felsbau 25(1):15–22

    Google Scholar 

  • Steiner W, Kaiser PK, Spaun G (2010) Role of brittle fracture on swelling behaviour of weak rock tunnels: hypothesis and qualitative evidence. Geomech Tunn 3(5):583–596

    Article  Google Scholar 

  • Steiner W, Kaiser PK, Spaun G (2011) Role of brittle fracture in swelling behaviour: evidence from tunnelling case histories. Geomech Tunn 4(2):141–156

    Article  Google Scholar 

  • Stephansson O, Hudson JA, Jing L (2004) Coupled thermo-hydro-mechanical processes in geo-systems: fundamentals, modelling, experiments, and applications. Elsevier geo-engineering book series 2, Elsevier, Boston, 832 pp

  • Thuro K (1993) Der Pulver-Quellversuch – ein neuer Quellhebungsversuch (The powder swelling test: a new swellability test). Geotechnik 16(3):101–106

    Google Scholar 

  • Wahlen R (2009) Validierung eines Berechnungsverfahrens für Tunnelbauwerke in quellfähigem Gebirge (Validation of a computational method for tunnels in swelling rock). Geotechnik in Forschung und Praxis - WBI-Print 17, 235 pp

  • Wahlen R, Wittke W (2009) Kalibrierung der felsmechanischen Kennwerte für Tunnelbauten in quellfähigem Gebirge (Calibration of the rock mechanical parameters for tunnels in swelling rock). Geotechnik 32:226–233

    Google Scholar 

  • Wendler F, Mennerich C, Nestler B (2011) A phase-field model for polycrystalline thin film growth. J Cryst Growth 327(1):189–201

    Article  Google Scholar 

  • Wichter L (1989) Swelling of anhydriceous claystones. Bautechnik 66(1):1–6

    Google Scholar 

  • Winkler EM (1973) Stone: properties, durability. In: Man’s environment. Applied mineralogy, Vol 4. Springer, Wien, 230 pp

  • Wittke W (1978) Grundlagen für die Bemessung uns Ausführung von Tunnels in quellendem Gebirge und ihre Anwendung beim Bau der Wendeschleife der S-Bahn Stuttgart (Fundamentals for the design and construction of tunnels in swelling rock and their application to the construction of the terminal loop of the urban railway of Stuttgart). Publications of the Institute for Foundation Engineering, Soil Mechanics, Rock Mechanics and Water Way Construction of RWTH Aachen Vol. 6, 132 pp

  • Wittke W (1990) Rock mechanics - theory and application with case histories. Springer, Berlin

    Google Scholar 

  • Wittke M (2003) Begrenzung der Quelldrücke durch Selbstabdichtung beim Tunnelbau im anhydritführenden Gebirge (Limitation of swelling pressures by self-sealing in tunneling in anhydrite-bearing rock). Geotechnik in Forschung und Praxis WBI-Print vol 13, Verlag Glückauf, Essen

  • Wittke W (2007) New high-speed railway lines Stuttgart 21 and Wendlingen-Ulm - Approximately 100 km of tunnels. In: Underground space - the 4th dimension of metropolises, Vols 1–3, pp 771–778

  • Wittke W (2014) Rock mechanics based on an anisotropic jointed rock model (AJRM). Ernst, Berlin 875 pp

    Book  Google Scholar 

  • Wittke W, Wittke M, Wahlen R (2004) The source law of anhydrite containing Gipskeuper. Geotechnik 27(2):112–117

    Google Scholar 

  • Wittke-Gattermann P (1998) Verfahren zur Berechnung von Tunnels in quellfähigem Gebirge und Kalibrierung an einem Versuchsbauwerk (Approach for the design of tunnels in swelling rock and calibration at an experimental structure). PhD thesis, RWTH Aachen

  • Xie P, Beaudoin JJ (1992) Mechanism of sulphate expansion – I. Thermodynamic principle of crystallization pressure. Cem Concr Res 22(4):631–640

    Article  Google Scholar 

  • Yilmaz I (2001) Gypsum/anhydrite: some engineering problems. Bull Eng Geol Environ 60(3):227–230

    Article  Google Scholar 

  • Zorn T, Küchler R, Noack K, Dittmar T, Worch E (2009) Zur Gipsauflösung in Batch- und Säulenversuchen (Dissolution of gypsum with batch and column experiments). Grundwasser 14(4):287–295

    Article  Google Scholar 

Download references

Acknowledgments

The first author wishes to thank Peter Huggenberger from the University of Basel and Herbert H. Einstein from MIT for long-standing collaboration and fruitful scientific discussion in the field of swelling clay-sulfate rocks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Butscher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butscher, C., Mutschler, T. & Blum, P. Swelling of Clay-Sulfate Rocks: A Review of Processes and Controls. Rock Mech Rock Eng 49, 1533–1549 (2016). https://doi.org/10.1007/s00603-015-0827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0827-6

Keywords

Navigation