Skip to main content
Log in

Numerical Simulation of Squeezing Failure in a Coal Mine Roadway due to Mining-Induced Stresses

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Squeezing failure is a common failure mechanism experienced in underground coal mine roadways due mainly to mining-induced stresses, which are much higher than the strength of rock mass surrounding an entry. In this study, numerical simulation was carried out to investigate the mechanisms of roadway squeezing using a novel UDEC Trigon approach. A numerical roadway model was created based on a case study at the Zhangcun coal mine in China. Coal extraction using the longwall mining method was simulated in the model with calculation of the mining-induced stresses. The process of roadway squeezing under severe mining-induced stresses was realistically captured in the model. Deformation phenomena observed in field, including roof sag, wall convexity and failed rock bolts are realistically produced in the UDEC Trigon model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aksoy CO, Ogul K, Topal I et al (2012) Numerical modeling of non-deformable support in swelling and squeezing rock. Int J Rock Mech Min Sci 52:61–70. doi:10.1016/j.ijrmms.2012.02.008

    Article  Google Scholar 

  • Aydan Ö, Akagi T, Kawamoto T (1993) The squeezing potential of rocks around tunnels; theory and prediction. Rock Mech Rock Eng 26:137–163. doi:10.1007/BF01023620

    Article  Google Scholar 

  • Barla G (1995) Squeezing rocks in tunnel. Int Soc Rock Mech News J 2:44–49

    Google Scholar 

  • Bieniawski ZT (1968a) In situ strength and deformation characteristics of coal. Eng Geol 2:325–340. doi:10.1016/0013-7952(68)90011-2

    Article  Google Scholar 

  • Bieniawski ZT (1968b) The effect of specimen size on compressive strength of coal. Int J Rock Mech Min Sci Geomech Abstr 5:325–335. doi:10.1016/0148-9062(68)90004-1

    Article  Google Scholar 

  • Bieniawski ZT (1976) Rock mass classification in rock engineering applications. Procedings of the Symposium on Exploration for Rock Engineering. Balkema, pp 97–106

  • Dalgıç S (2002a) Tunneling in squeezing rock, the Bolu tunnel, Anatolian Motorway, Turkey. Eng Geol 67:73–96. doi:10.1016/S0013-7952(02)00146-1

    Article  Google Scholar 

  • Dalgıç S (2002b) Tunneling in squeezing rock, the Bolu tunnel, Anatolian Motorway, Turkey. Eng Geol 67:73–96. doi:10.1016/S0013-7952(02)00146-1

    Article  Google Scholar 

  • Farmer IW (1975) Stress distribution along a resin grouted rock anchor. Int J Rock Mech Min Sci Geomech Abstr 12:347–351. doi:10.1016/0148-9062(75)90168-0

    Article  Google Scholar 

  • Gao FQ, Stead D (2014) The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int J Rock Mech Min Sci 68:1–14. doi:10.1016/j.ijrmms.2014.02.003

    Google Scholar 

  • Heerden WL (1975) In situ complete stress-strain characteristics of large coal specimens. J South Afr Inst Min Metall:207–217

  • Itasca Consulting Group Inc (2014) UDEC (universal distinct element code), version 6.0. Itasca, Minneapolis

  • Luo J (1997) Gateroad design in overlying multi-seam mines. Masters thesis, Virginia Polytechnic Institute and State University

  • Mark C, Gale W, Oyler D, Chen J (2007) Case history of the response of a longwall entry subjected to concentrated horizontal stress. Int J Rock Mech Min Sci 44:210–221. doi:10.1016/j.ijrmms.2006.06.005

    Article  Google Scholar 

  • Medhurst TP, Brown ET (1998) A study of the mechanical behaviour of coal for pillar design. Int J Rock Mech Min Sci 35:1087–1105. doi:10.1016/S0148-9062(98)00168-5

    Article  Google Scholar 

  • Peng S (1986) Coal mine ground control, 2nd edn. Wiley, New York

    Google Scholar 

  • Schubert W, Golser J, Schwab P (1996) Improvement of support for squeezing rock. Int J Rock Mech Min Sci Geomech Abstr 33:329A

    Google Scholar 

  • Singh M, Seshagiri Rao K (2005) Empirical methods to estimate the strength of jointed rock masses. Eng Geol 77:127–137. doi:10.1016/j.enggeo.2004.09.001

    Article  Google Scholar 

  • Singh B, Jethwa J, Dube A, Singh B (1992) Correlation between observed support pressure and rock mass quality. Tunn Underground Space Technol 7:59–74. doi:10.1016/0886-7798(92)90114-W

    Article  Google Scholar 

  • Wang C, Wang Y, Lu S (2000) Deformational behaviour of roadways in soft rocks in underground coal mines and principles for stability control. Int J Rock Mech Min Sci 37:937–946. doi:10.1016/S1365-1609(00)00026-5

    Article  Google Scholar 

  • Yassaghi A, Salari-Rad H (2005) Squeezing rock conditions at an igneous contact zone in the Taloun tunnels, Tehran-Shomal freeway, Iran: a case study. Int J Rock Mech Min Sci 42:95–108. doi:10.1016/j.ijrmms.2004.07.002

    Article  Google Scholar 

  • Zhang L, Einstein HH (2004) Using RQD to estimate the deformation modulus of rock masses. Int J Rock Mech Min Sci 41:337–341. doi:10.1016/S1365-1609(03)00100-X

    Article  Google Scholar 

  • Zipf Jr RK (2006) Numerical modeling procedures for practical coal mine design. Proceedings of the 41st US Rock Mechanics Symposium. Golden, Colorado, pp 1–11

Download references

Acknowledgments

We thank Dr. Yongzheng Wu in China Coal Research Institute for providing further field data for calibrating the UDEC models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Stead, D. & Kang, H. Numerical Simulation of Squeezing Failure in a Coal Mine Roadway due to Mining-Induced Stresses. Rock Mech Rock Eng 48, 1635–1645 (2015). https://doi.org/10.1007/s00603-014-0653-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0653-2

Keywords

Navigation