Skip to main content

Advertisement

Log in

Parametric Study of Smooth Joint Parameters on the Shear Behaviour of Rock Joints

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper aims to study the shear behaviour of rock joints in a direct shear test using the particle flow code PFC2D. In this numerical approach, the intact rock is simulated by densely packed circular particles that are bonded together at their contact points; joint surfaces can be explicitly simulated using the modified smooth joint (SJ) model. In the modified SJ model for simulation of direct shear test, micro-scale slip surfaces (smooth joint contacts) are applied at contacts between the particles of the upper and lower blocks of the shear box and the mechanical behaviour of the joints is controlled by the micro-scale properties of the smooth joint contacts. Two joint profiles of standard JRC 10–12 and a sawtooth triangular joint with a base angle of 15° were selected for testing. The results of direct shear tests under different normal stresses on these two profiles show that for the sawtooth triangular joints under a normal stress of 1 MPa, the shearing mechanism is purely sliding, and for the JRC 10–12 profile under a normal stress of 4 MPa, the shearing of first-order asperities controls the shearing mechanism. A parametric study of the micro-properties of the smooth joints under these two different shearing mechanisms was undertaken. The results of this study show that the SJ normal stiffness and the SJ shear stiffness have insubstantial effect on the peak shear strength in sliding mode, but that the SJ normal stiffness has a significant effect on the dilation rate in both sliding and shearing modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

τ :

Shear stress

\(\phi_{\text{r}}\) :

Residual friction angle

JCS:

Joint compressive strength

BPM:

Bonded particle model

σ c :

Uniaxial compressive strength

ν :

Poisson’s ratio

δ peak :

Peak shear displacement

M :

Damage coefficient

R min :

Minimum particle radius

F n :

Normal force

U s :

Shear displacement

E c :

Particle modulus

k n :

Particle normal stiffness

k s :

Particle shear stiffness

μ c :

Particle coefficient of friction

\(\hat{n}_{\text{j}}\) :

Normal unit vector of joint plane

A :

Area of SJ cross section

t :

Thickness of SJ

\(\bar{k}_{\text{nj}}\) :

SJ normal stiffness

\(\mu_{\text{j}}\) :

SJ coefficient of friction

\(\psi_{\text{j}}\) :

SJ dilation angle

\(F_{\text{s}}^{'}\) :

Updated shear force at SJ contact

\(\Delta U_{\text{s}}^{\text{e}}\) :

Elastic portion of tangential displacement

σ n :

Normal stress

JRC:

Joint roughness coefficient

SJ:

Smooth joint

E :

Elastic modulus

SD:

Standard deviation

d n :

Peak dilation angle

R :

Particle radius

R max :

Maximum particle radius

F s :

Shear force

U n :

Normal displacement

\(\bar{E}_{\text{c}}\) :

Parallel bond modulus

\(\bar{k}^{\text{n}}\) :

Parallel bond normal stiffness

\(\bar{k}^{\text{s}}\) :

Parallel bond shear stiffness

Δ:

Increment

\(\hat{t}_{\text{j}}\) :

Tangential unit vector of joint plane

\(\bar{R}\) :

Radius of SJ

\(\bar{\lambda }\) :

Radius multiplier of SJ

\(\bar{k}_{sj}\) :

SJ shear stiffness

\(\phi_{\text{j}}\) :

SJ friction angle

\(F_{\text{s}}^{*}\) :

Greatest value of shear force at SJ contact

\(\Delta U_{\text{n}}^{\text{e}}\) :

Elastic portion of normal displacement

References

  • Akram MS, Sharrock GB (2010) Physical and numerical investigation of a cemented granular assembly of steel spheres. Int J Numer Anal Methods Geomech 34:1896–1934

    Article  Google Scholar 

  • Asadi M, Rasouli V, Barla G (2012) A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures. Rock Mech Rock Eng 45:649–675. doi:10.1007/s00603-012-0231-4

    Google Scholar 

  • Asadi MS, Rasouli V, Barla G (2013) A laboratory shear cell used for simulation of shear strength and asperity degradation of rough rock fractures. Rock Mech Rock Eng 46:683–699. doi:10.1007/s00603-012-0322-2

    Article  Google Scholar 

  • Asadollahi P, Invernizzi MA, Addotto S, Tonon F (2010) Experimental validation of modified Barton’s model for rock fractures. Rock Mech Rock Eng 43:597–613. doi:10.1007/s00603-010-0085-6

    Article  Google Scholar 

  • Bahaaddini M (2014) Numerical study of the mechanical behaviour of rock joints and non-persistent jointed rock masses. PhD Dissertation, UNSW Australia

  • Bahaaddini M, Sharrock G, Hebblewhite B, Mitra R (2012) Direct shear tests to model the shear behaviour of rock joints by PFC2D. Paper presented at the 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago, IL

  • Bahaaddini M, Sharrock G, Hebblewhite BK (2013a) Numerical direct shear tests to model the shear behaviour of rock joints. Comput Geotech 51:101–115. doi:10.1016/j.compgeo.2013.02.003

    Article  Google Scholar 

  • Bahaaddini M, Sharrock G, Hebblewhite BK (2013b) Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Comput Geotech 49:206–225. doi:10.1016/j.compgeo.2012.10.012

    Article  Google Scholar 

  • Barton N (1973) Review of a new shear-strength criterion for rock joints. Eng Geol 7:287–332. doi:10.1016/0013-7952(73)90013-6

    Article  Google Scholar 

  • Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54. doi:10.1007/bf01261801

    Article  Google Scholar 

  • Byerlee JD (1967) Theory of friction based on brittle fracture. J Appl Phys 38:2928–2934

    Article  Google Scholar 

  • Cundall PA (2000) Numerical experiments on rough joints in shear using a bonded particle model. In: Aspects of tectonic faulting. Springer, Berlin, pp 1–9

  • Deisman N, Mas Ivars D, Darcel C, Chalaturnyk RJ (2010) Empirical and numerical approaches for geomechanical characterization of coal seam reservoirs. Int J Coal Geol 82:204–212. doi:10.1016/j.coal.2009.11.003

    Article  Google Scholar 

  • Esmaieli K, Hadjigeorgiou J, Grenon M (2010) Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine. Int J Rock Mech Min Sci 47:915–926

    Article  Google Scholar 

  • Esmaieli K, Hadjigeorgiou J, Grenon M (2013) Stability analysis of the 19A ore pass at Brunswick mine using a two-stage numerical modeling approach. Rock Mech Rock Eng 46:1323–1338. doi:10.1007/s00603-013-0371-1

    Article  Google Scholar 

  • Grasselli G (2006) Manuel rocha medal recipient-shear strength of rock joints based on quantified surface description. Rock Mech Rock Eng 39:295–314. doi:10.1007/s00603-006-0100-0

    Article  Google Scholar 

  • Grasselli G, Egger P (2003) Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int J Rock Mech Min Sci 40:25–40. doi:10.1016/S1365-1609(02)00101-6

    Article  Google Scholar 

  • Grasselli G, Wirth J, Egger P (2002) Quantitative three-dimensional description of a rough surface and parameter evolution with shearing. Int J Rock Mech Min Sci 39:789–800. doi:10.1016/S1365-1609(02)00070-9

    Article  Google Scholar 

  • Hadjigeorgiou J, Esmaieli K, Grenon M (2009) Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model. Tunn Undergr Space Technol 24:296–308. doi:10.1016/j.tust.2008.10.002

    Article  Google Scholar 

  • Handanyan JM, Danek ER, Andrea RAD, Sage JD (1990) The role of tension in failure of jointed rock. Paper presented at the Rock Joints: proceedings of a Regional Conference of the International Society for Rock Mechanics, Leon

  • Hudson JA, Harrison JP (1997) Engineering rock mechanics: an introduction to the principles. Pergamon, UK, Oxford

    Google Scholar 

  • Indraratna B, Haque A (2000) Experimental and numerical modeling of shear behaviour of rock joints. Paper presented at the GeoEng 2000, an international conference on geotechnical and geological engineering, Melbourne

  • Itasca Consulting Group Inc (2008) PFC2D manual, version 4.0. Minneapolis

  • Jaeger JC (1971) Friction of rocks and stability of rock slopes. Géotechnique 21:97–134

    Article  Google Scholar 

  • Jing L, Stephansson O (2007) Fundamentals of discrete element methods for rock engineering: theory and applications. Elsevier, Amsterdam

    Google Scholar 

  • Karami A, Stead D (2008) Asperity degradation and damage in the direct shear test: a hybrid FEM/DEM approach. Rock Mech Rock Eng 41:229–266. doi:10.1007/s00603-007-0139-6

    Article  Google Scholar 

  • Kodikara JK (1989) Shear behaviour of rock-concrete joints and side resistance of piles in weak rock. PhD Dissertation, Monash University

  • Kusumi H, Matsuoka T, Ashida Y, Tatsumi S (2005) Simulation analysis of shear behavior of rock joint by distinct element method. In: Eurock 2005—impact of human activity on geological environment. Taylor and Francis, London, pp 281–286

  • Ladanyi B, Archambault G (1969) Simulation of shear behavior of a jointed rock mass. Paper presented at the 11th US Rock Mechanics Symposium (USRMS), Berkeley

  • Ladanyi B, Archambault G (1980) Direct and indirect determination of shear strength of rock mass. Paper presented at the AIME annual meeting, Las Vegas

  • Leal-Gomes M, Dinis-da-Gama C (2010) Proposal for standardization of pull tests on rock joints. Int J Geomech 11:78–82. doi:10.1061/(asce)gm.1943-5622.0000072

    Article  Google Scholar 

  • Lee S (2003) Stability around underground openings in rock with dilative, non-persistent and multi-scale wavy joints using a discrete element method. PhD Dissertation, University of Illinois

  • Mas Ivars D, Pierce ME, Darcel C, Reyes-Montes J, Potyondy DO, Young RP, Cundall PA (2011) The synthetic rock mass approach for jointed rock mass modelling. Int J Rock Mech Min Sci 48:219–244. doi:10.1016/j.ijrmms.2010.11.014

    Article  Google Scholar 

  • Oh JM (2005) Three dimensional numerical modeling of excavation in rock with dilatant joints. PhD Dissertation, University of Illinois

  • Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Min Sci 38:317–329. doi:10.1016/s1365-1609(00)00079-4

    Article  Google Scholar 

  • Park JW, Song JJ (2009) Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int J Rock Mech Min Sci 46:1315–1328. doi:10.1016/j.ijrmms.2009.03.007

    Article  Google Scholar 

  • Park JW, Song JJ (2013) Numerical method for the determination of contact areas of a rock joint under normal and shear loads. Int J Rock Mech Min Sci 58:8–22. doi:10.1016/j.ijrmms.2012.10.001

    Google Scholar 

  • Patton FD (1966) Multiple modes of shear failure in rock. Paper presented at the 1st ISRM Congress, Lisbon

  • Pierce M, Cundall P, Potyondy D, Mas Ivars D (2007) A synthetic rock mass model for jointed rock. Paper presented at the rock mechanics: meeting society’s challenges and demands, 1st Canada-U.S. Rock Mechanics Symposium, Vancouver

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364. doi:10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  • Rasouli V, Harrison JP (2010) Assessment of rock fracture surface roughness using Riemannian statistics of linear profiles. Int J Rock Mech Min Sci 47:940–948. doi:10.1016/j.ijrmms.2010.05.013

    Article  Google Scholar 

  • Saeb S, Amadei B (1992) Modelling rock joints under shear and normal loading. Int J Rock Mech Min Sci Geomech Abstracts 29:267–278. doi:10.1016/0148-9062(92)93660-C

    Article  Google Scholar 

  • Seidel JP (1993) The analysis and design of pile shafts in weak rock. PhD Dissertation, Monash University

  • Seidel JP, Haberfield CM (1995) The application of energy principles to the determination of the sliding resistance of rock joints. Rock Mech Rock Eng 28:211–226. doi:10.1007/bf01020227

    Article  Google Scholar 

  • Vosniakos K (2007) Physical and numerical modelling of shear behaviour of saw-toothed filled rock joint. PhD Dissertation, University of Manchester

Download references

Acknowledgments

The authors would like to acknowledge Dr. Glenn Sharrock, Dr. David Potyondy, Dr. Mathew Pierce, Dr. Xavier Garcia and Dr. Diego Mas Ivars from Itasca Consulting Group for their technical support and invaluable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bahaaddini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahaaddini, M., Hagan, P.C., Mitra, R. et al. Parametric Study of Smooth Joint Parameters on the Shear Behaviour of Rock Joints. Rock Mech Rock Eng 48, 923–940 (2015). https://doi.org/10.1007/s00603-014-0641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0641-6

Keywords

Navigation