Skip to main content
Log in

On the Occurrence of Anhydrite in the Sulphatic Claystones of the Gypsum Keuper

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

We investigate why the sulphatic claystones of the Gypsum Keuper contain anhydrite rather than gypsum even at small depths of cover. This question is relevant due to the phenomenon of swelling of anhydritic claystones, which is attributed to the transformation of anhydrite into gypsum and has caused serious damage to a number of tunnels. In tunnelling, the Gypsum Keuper formation is crossed at rather small depths, where simplified thermodynamic considerations indicate that the calcium sulphate should be encountered in its hydrated form, i.e. as gypsum rather than as anhydrite. Understanding why anhydrite can be found at small depths is not only interesting from a fundamental point of view, but also necessary in order to formulate adequate initial conditions for the continuum-mechanical models that simulate the chemo-mechanical and transport processes in swelling anhydritic claystones. The paper quantitatively examines three reasons which, alone or in combination, might explain the occurrence of anhydrite: the small size of the pores in argillaceous rocks; locally high stresses in the vicinity of the sulphate crystals; and the thermodynamic state of the pore water. The computations of the paper take account of the results of porosimetry experiments on samples from two Swiss tunnels in Gypsum Keuper and show that the most probable reason is the thermodynamic state of the pore water, i.e. its ability to participate in chemical reactions. More specifically, the clay minerals reduce the chemical potential of the pore water, thus increasing the solubility of the gypsum and shifting the thermodynamic equilibrium in favour of anhydrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

b :

Coefficient

c eq,A :

Equilibrium concentration of anhydrite

c eq,G :

Equilibrium concentration of gypsum

c 0 :

Concentration at standard state

F p :

Area of the pores

F tot :

Total area

g :

Gravitational acceleration

H :

Depth of cover

L :

Side length

n :

Pore percentage

n cr :

Critical pore percentage

p A :

Anhydrite pressure

p G :

Gypsum pressure

p S0 :

Lithostatic pressure

p W :

Pore water pressure

p W0 :

Initial (in situ) pore water pressure

p W1 :

Pore water pressure after swelling test

p G,UL :

Upper limit of the gypsum pressure

R :

Universal gas constant

r A :

Radius of anhydrite particles

r cr :

Critical pore radius

r G :

Radius of gypsum particles

r p :

Pore radius

T :

Temperature

T 0 :

Temperature at standard state

\( V_{A}^{0} \) :

Molar volume of anhydrite at standard state

\( V_{G}^{0} \) :

Molar volume of gypsum at standard state

\( V_{W}^{0} \) :

Molar volume of water at standard state

\( V_{W} \) :

Molar volume of water

a W :

Water activity

γ A :

Surface free energy of the anhydrite–water interface

γ G :

Surface free energy of the gypsum–water interface

γ ± :

Mean activity coefficient

\( \Delta_{r,GA} G^{0} \) :

Standard Gibbs energy of anhydrite hydration

\( \Delta_{r,GA} S^{0} \) :

Standard entropy of anhydrite hydration

\( \Delta_{r,A} V^{0} \) :

Standard volume of anhydrite dissolution

\( \Delta_{r,G} V^{0} \) :

Standard volume of gypsum dissolution

σ :

Total stress

σ 0 :

Initial total stress

σ s :

Maximum swelling pressure

σ′:

Effective stress

σ 0 :

Initial (in situ) effective stress

ρ R :

Rock density

ρ W :

Water density

\( \phi \) :

Porosity

\( \phi_{{_{cr} }} \) :

Critical porosity

Ψ:

Potential

Ψ0 :

Potential of pore water in situ

Ψ1 :

Potential of pore water after swelling test

References

  • Abell BA, Willis LK, Lange AD (1999) Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials. J Colloid Interface Sci 211(1):39–44

    Article  Google Scholar 

  • Alonso EE, Olivella S (2008) Modelling tunnel performance in expansive gypsum claystones. In: International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, pp 891–910

  • Amstad C, Kovári K (2001) Untertagbau in quellfähigem Fels. Schlussbericht Forschungsauftrag 52/94 des Bundesamts für Strassen, ASTRA

  • Anagnostou G (1991) Untersuchungen zur Statik des Tunnelbaus in quellfähigem Gebirge. Dissertation Nr. 9553, ETH Zürich

  • Anagnostou G (1993) A model for swelling rock in tunnelling. Rock Mech Rock Eng 26(4):307–331

    Article  Google Scholar 

  • Anagnostou G, Kovári K (1993) Significant parameters in elastoplastic analysis of underground openings. J Geotech Eng 119(3):401–419

    Article  Google Scholar 

  • Bihannic I, Delville A, Demé B, Plazanet M, Villièras F, Michot LJ (2009) Clay swelling: New insights from Neutron-Based Techniques. In: Liang L, Rinaldi R, Schober H (eds) Neutron Applications in Earth. Springer, Energy and Environmental Sciences, pp 521–546

    Chapter  Google Scholar 

  • Boidin E, Homand F, Thomas F, Yvon J (2009) Anhydrite-gypsum transition in the argillites of flooded salt workings in eastern France. Environ Geol 58:531–542

    Article  Google Scholar 

  • Chiaverio F, Thut A (2010) Chienberg Tunnel Rehabilitation using yielding elements of the section in Keuper sediments affected by heave. Geomech Tunn 3(5):573–582

    Article  Google Scholar 

  • Coussy O, Dangla P, Dormieux L, Lemarchand E (1999) A two-scale modelling of a swelling clay. J Phys IV France 9:21–31

    Article  Google Scholar 

  • Dassault Systèmes (2011) Abaqus 6.11—Theory Manual and Analysis User’s Manual

  • Davies CW (1962) Ion association. Butterwoths, London

    Google Scholar 

  • Devineau K, Bihannic I, Michot L, Villiéras F, Masrouri F, Cuisinier O, Fragneto G, Michau N (2006) In situ neutron diffraction analysis of the influence of geometric confinement on crystalline swelling of montmorillonite. Appl Clay Sci 31:76–84

    Article  Google Scholar 

  • Fecker E (1981) Influence of swelling rock on tunnelling. Bull Int Assoc Eng Geol 24:27–32

    Article  Google Scholar 

  • Flatt JR (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454

    Article  Google Scholar 

  • Grob H (1972) Schwelldruck im Belchentunnel. In: Proceedings of the International Symposium on Underground Construction, Lucerne, Switzerland, pp 99–119

  • Hauber L, Jordan P, Madsen F, Nüesch R, Vögtli B (2005) Tonminerale und Sulfate als Ursache für druckhaftes Verhalten von Gesteinen—Ursachen und Wirkungen des Quellvorganges. Forschungsauftrag ASTRA 1996/039

  • ISRM (1999) Suggested methods for laboratory testing of swelling rock. Int J Rock Mech Min Sci 36:291–306

    Article  Google Scholar 

  • Jordan P (1994) Evaporite als Abscherhorizonte—Eine gefügekundlich-strukturgeologische Untersuchung am Beispiel der Nordschweizer Trias. Beiträge zur geologischen Karte der Schweiz, Lieferung, p 164

  • Krause H (1976) Sulphate rocks in Baden-Württemberg and their importance in relation to civil engineering. Bull Int Assoc Eng Geol 13:45–49

    Google Scholar 

  • Krause H, Wurm F (1975) Geologische Grundlagen und Untersuchungen zum Problem der Sohlhebungen in Keupertunneln Baden-Württembergs. In: Durchführung eines felsmechanischen Grossversuches in der Nordröhre des Wagenburgtunnels in Stuttgart. Hrsg. Bundesminister f. Verkehr, Bau- und Wohnungswesen. Strassenbau und Strassenverkehrstechnik, Heft 184:9–41

  • Kuhnhenn K, Lorscheider W (1979) Sondierstollen mit Probestrecken für den Engelberg-Basistunnel der Autobahn Heilbronn-Stuttgart. Rock Mech, Suppl. 8:147–171

  • Leemann A, Wyrzykowski M (2012) MIP tests on Gypsum Keuper samples from the Chienberg and Belchen Tunnel. Internal laboratory test report, EMPA

  • Lippmann F (1976) Corrensite, a swelling clay mineral, and its influence on floor heave in tunnels in the Keuper formation. Bull Int Assoc Eng Geol 13:65–70

    Article  Google Scholar 

  • Lippmann F, Schüle F (1975) Mineralogische Untersuchungen an Keupergesteinen unter besonderer Berücksichtigung der Tonminerale. In: Durchführung eines felsmechanischen Grossversuches in der Nordröhre des Wagenburgtunnels in Stuttgart. Hrsg. Bundesminister f. Verkehr, Bau- und Wohnungswesen. Strassenbau und Strassenverkehrstechnik, Heft 184, pp 119–148

  • Mering J (1946) On the hydration of montmorillonite. Trans Faraday Soc 42:205–219

    Article  Google Scholar 

  • Mitaritonna G, Pineda J, Arroyo M, Romero E (2009) The effect of drying-wetting cycles on the seismic properties of an anisotropic claystone. In: Ling HI, Smyth A, Betti R (eds) Biot conference on poromechanics, vol 4. DEStech Publications Inc, PA, pp 286–293

    Google Scholar 

  • Mohajerani M, Delage P, Monfared M, Tang AM, Sulem J, Gatmiri B (2012) On the resaturation of swelling claystone. In: Mancuso C, Jommi C, D’Onza F (eds) Unsaturated soils: research and applications, Springer, Berlin, pp 411–417

  • Norrish K, Quirk JP (1954) Crystalline swelling of montmorillonite—use of electrolytes to control swelling. Nature 173:255–256

    Article  Google Scholar 

  • Oldecop L, Alonso E (2012) Modelling the degradation and swelling of clayey rocks bearing calcium-sulphate. Int J Rock Mech Min Sci 54:90–102

    Google Scholar 

  • Paul A, Wichter L (1996) Das Langzeitverhalten von Tunnelbauwerken im quellenden Gebirge—Neuere Messergebnisse vom Stuttgarter Wagenburgtunnel. Taschenbuch für den Tunnelbau, Verlag, pp 135–164

    Google Scholar 

  • Pimentel E (2007) Quellverhalten von Gesteinen—Erkenntisse aus Laboruntersuchungen. Quellprobleme in der Geotechnik, Mitteilungen der Schweizerischen Gesellschaft für Boden- und Felsmechanik, Frühjahrstagung Freiburg 154:11–20

  • Prommersberger G, Kuhnhenn K (1989) The Freudenstein tunnel–tunnel construction in swelling rocks. Rapid Excavation and Tunneling Conference Los Angeles, California, Chapter 42, June 11–14, pp 678–700

  • Rauh F (2009) Untersuchungen zum Quellverhalten von Anhydrit und Tongesteinen im Tunnelbau. Müncher Geowissenschaftliche Abhandlungen 11:1–110

    Google Scholar 

  • Rolnick SL (1954) The stability of gypsum and anhydrite in the geologic environment. PhD Thesis, Massachusetts Institute of Technology

  • Röthlisberger A (2012) MIP tests on Gypsum Keuper samples from the Chienberg and Belchen Tunnel. Internal laboratory test report, Institute for Geotechnical Engineering, ETH Zurich

  • Scanlon RB, Andraski JB, Bilskie J (2002) Miscellaneous methods for measuring matric or water potential. In: Dane JH, Topp GC (eds) Methods of soil analysis, part 4: physical methods. Soil Science Society of America, Madison, pp 643–670

    Google Scholar 

  • Scherer WG (2002) Factors affecting crystallization pressure. In: International RILEM TC 186-ISA Workshop on Internal Sulfate Attack and Delayed Ettringite Formation, Villars, Switzerland, pp 139–154

  • Scherer WG (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624

    Article  Google Scholar 

  • Serafeimidis K, Anagnostou G (2013) On the time-development of sulphate hydration in anhydritic swelling rocks. Rock Mech Rock Eng 46:619–634

    Article  Google Scholar 

  • Serafeimidis K, Anagnostou G (2014) The solubilities and thermodynamic equilibrium of anhydrite and gypsum. Rock Mech Rock Eng. doi:10.1007/s00603-014-0557-1

    Google Scholar 

  • Wichter L (1989) Quellen anhydrithaltiger Tongesteine. Bautechnik 66(1):1–6

    Google Scholar 

  • Woodburn JA, Holden JC, Peter P (1993) The transistor psychrometer: a new instrument for measuring soil suction. In: Houston SL, Wray WK (eds) Unsaturated soils, vol 39. Geotechnical Special Publication, New York, pp 91–102

    Google Scholar 

  • Zhang F, Xie SY, Hu DW, Shao JF, Gatmiri B (2012) Effect of water content and structural anisotropy on mechanical property of claystone. Appl Clay Sci 69:79–86

    Article  Google Scholar 

Download references

Acknowledgments

This paper evolved within the framework of the research project “Modelling of anhydritic swelling claystones”, which is being carried out at the ETH Zurich with the financing of the Swiss National Science Foundation (SNF) under Project Nr. 200021-126717/1 and the Swiss Federal Roads Office (FEDRO) under Project Nr. FGU 2010-007. The authors would like to thank Prof. Robert Flatt, ETH Zurich, for his valuable suggestions concerning the importance of pore size and liquid–crystal interfacial effects; Dr. Andreas Leemann and Dr. Mateusz Wyrzykowski from EMPA, as well as Mrs Annette Röthlisberger from our Institute’s Clay Mineralogy Lab for performing the MIP tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Anagnostou.

Appendix

Appendix

Sections 2, 3 and 4 make frequent use of the following expressions for the equilibrium concentrations c eq,G and c eq,A of gypsum and anhydrite:

$$ RT\ln \left( {\gamma_{ \pm }^{{}} \frac{{c_{eq,G}^{{}} }}{{c_{0} }}a_{W}^{{}} } \right)^{2} = - \Delta_{r,G} G^{0} + \left( {T - T_{0} } \right)\;\Delta_{r,G} S^{0} + \left( {p_{G} + \frac{{2\gamma_{G} }}{{r_{G} }}} \right)\;V_{G}^{0} - p_{W} \;\left( {V_{G}^{0} + \Delta_{r,G} V^{0} } \right), $$
(6)
$$ RT\ln \left( {\gamma_{ \pm }^{{}} \frac{{c_{eq,A}^{{}} }}{{c_{0} }}} \right)^{2} = - \Delta_{r,A} G^{0} + \left( {T - T_{0} } \right)\;\Delta_{r,A} S^{0} + \;\left( {p_{A} + \frac{{2\gamma_{A} }}{{r_{A} }}} \right)V_{A}^{0} - p_{W} \left( {\;V_{A}^{0} + \Delta_{r,A} V^{0} } \right), $$
(7)

where T, p G , p A and p W denote the temperature, the gypsum pressure, the anhydrite pressure and the pore water pressure, respectively. The symbols γ G , r G , γ A and r A denote the surface energies and the particle radii of gypsum and anhydrite. The surface energy γ G of gypsum can be taken equal to 80 mN/m, while the effect of surface energy of the anhydrite particles (term 2γ A /r A ) can be neglected because of their relatively large size (>1 μm). The symbol γ ± denotes the mean activity coefficient of the dissolved ions and can be computed after Davies (1962). The symbols c 0 and T 0 denote the standard concentration (1 mol/l) and the standard temperature (298 K), respectively. The other symbols appearing in Eqs. (6) and (7) are the thermodynamic constants. More details, including the derivations of the equations as well as the values of the thermodynamic constants, can be found in Serafeimidis and Anagnostou (2014).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anagnostou, G., Serafeimidis, K. & Vrakas, A. On the Occurrence of Anhydrite in the Sulphatic Claystones of the Gypsum Keuper. Rock Mech Rock Eng 48, 1–13 (2015). https://doi.org/10.1007/s00603-014-0568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0568-y

Keywords

Navigation