Skip to main content
Log in

Fracturing and Failure Behavior of Carrara Marble in Quasistatic and Dynamic Brazilian Disc Tests

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The tensile strength and fracturing behavior of Carrara marble subjected to the dynamic Brazilian disc test using the split Hopkinson pressure bar technique are determined and compared with those obtained by the conventional quasistatic Brazilian disc test. Detailed observation of the cracking processes is aided by high-speed video footage captured at a frame rate of 100,000 frames per second. The dynamic increase factor is computed, revealing a strong strain rate dependence of the Carrara marble when subjected to strain rates above 1 s−1. Similar to the quasistatic loading tests, conspicuous white zones/patches commonly appear prior to the initiation of visible cracks in the dynamic loading tests. Identification of the white patch initiation and evolution is aided by image comparison software. Comparing the cracking and failure processes under quasistatic and dynamic loading, some distinct differences in the white patch geometry and initiation load are observed. In addition, the extent of the compressive failure zones around the contact points between the loading platens and specimens is found to increase with the strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Atkinson BK (1979) Fracture toughness of Tennessee sandstone and Carrara marble using the double torsion testing method. Int J Rock Mech Min Sci Geomech Abstr 16(1):49–53. doi:10.1016/0148-9062(79)90774-5

    Article  Google Scholar 

  • Bieniawski Z, Hawkes I (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci 15:99–103

    Article  Google Scholar 

  • Bohloli B (1997) Effects of the geological parameters on rock blasting using the Hopkinson split bar. Int J Rock Mech Min 34(3–4):32.e31–32.e39. doi:10.1016/S1365-1609(97)00228-1

    Google Scholar 

  • Brooks Z, Ulm F, Einstein H, Abousleiman Y (2010) A nanomechanical investigation of the crack tip process zone. In: 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium

  • Brooks Z, Ulm FJ, Einstein HH (2012) Role of microstructure size in fracture process zone development of marble. In: 46th US Rock Mechanics/Geomechanics Symposium, Chicago, pp 1748–1757

  • Chen G, Kemeny J, Harpalani S (1992) Fracture propagation and coalescence in marble plates with pre-cut notches under compression. Fract Jt Rock Mass 14:435–439

    Google Scholar 

  • Chen C-S, Pan E, Amadei B (1998) Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int J Rock Mech Min 35(1):43–61. doi:10.1016/s0148-9062(97)00329-x

    Article  Google Scholar 

  • Chen S, Yue ZQ, Tham LG (2004) Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int J Rock Mech Min Sci 41(6):939–957

    Article  Google Scholar 

  • Chen W, Song B, Chen WW (2011) Conventional Kolsky bars. In: Split Hopkinson (Kolsky) Bar. Mechanical Engineering Series. Springer US, pp 1–35. doi:10.1007/978-1-4419-7982-7_1

  • Cho SH, Ogata Y, Kaneko K (2003) Strain-rate dependency of the dynamic tensile strength of rock. Int J Rock Mech Min 40(5):763–777. doi:10.1016/s1365-1609(03)00072-8

    Article  Google Scholar 

  • Dai F, Huang S et al (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666

    Article  Google Scholar 

  • Erarslan N, Williams DJ (2012) Experimental, numerical and analytical studies on tensile strength of rocks. Int J Rock Mech Min 49 (0): 21–30. doi:10.1016/j.ijrmms.2011.11.007

  • Fairhurst C (1964) On the validity of the ‘Brazilian’ test for brittle materials. Int J Rock Mech Min Sci Geomech Abstr 1(4):535–546. doi:10.1016/0148-9062(64)90060-9

    Article  Google Scholar 

  • Fuenkajorn K, Klanphumeesri S (2011) Laboratory determination of direct tensile strength and deformability of intact rocks. Geotech Test J 34(1):6

    Google Scholar 

  • Gomez JT, Shukla A, Sharma A (2001) Static and dynamic behavior of concrete and granite in tension with damage. Theor Appl Fract Mech 36(1):37–49. doi:10.1016/s0167-8442(01)00054-4

    Article  Google Scholar 

  • Gomez JT, Shukla A, Sharma A (2002) Photoelastic evaluation of stress fields and fracture during dynamic splitting experiments. J Test Eval 30(3):186–196

    Article  Google Scholar 

  • Grantham S, Siviour C, Proud W, Field J (2004) High-strain rate Brazilian testing of an explosive simulant using speckle metrology. Meas Sci Technol 15(9):1867

    Article  Google Scholar 

  • Gray III GT (2000) Classic split-Hopkinson pressure bar testing. ASM Int 2000:462–476

    Google Scholar 

  • Guo H, Aziz NI, Schmidt LC (1993) Rock fracture–toughness determination by the Brazilian test. Eng Geol 33(3):177–188. doi:10.1016/0013-7952(93)90056-i

    Article  Google Scholar 

  • Hooper JA (1971) The failure of glass cylinders in diametral compression. J Mech Phys Solids 19(4):179–200

    Article  Google Scholar 

  • Huang J, Chen G, Zhao Y, Wang R (1990) An experimental study of the strain field development prior to failure of a marble plate under compression. Tectonophysics 175(1–3):269–284. doi:10.1016/0040-1951(90)90142-u

    Google Scholar 

  • Hudson JA (1969) Tensile strength and the ring test. Int J Rock Mech Min Sci Geomech Abstr 6(1):91–97

    Article  Google Scholar 

  • Hudson JA, Brown ET, Rummel F (1972) The controlled failure of rock discs and rings loaded in diametral compression. Int J Rock Mech Min Sci Geomech Abstr 9(2):241–248. doi:10.1016/0148-9062(72)90025-3

    Article  Google Scholar 

  • ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15(3):99–103

    Article  Google Scholar 

  • Jaeger JC (1967) Failure of rocks under tensile conditions. Int J Rock Mech Min Sci Geomech Abstr 4(2):219–227. doi:10.1016/0148-9062(67)90046-0

    Article  Google Scholar 

  • Jaeger JC, Cook NGW (1976) Fundamentals of rock mechanics. Chapman and Hall, London

    Google Scholar 

  • Li D, Wong LNY (2013) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng 46(2):269–287. doi:10.1007/s00603-012-0257-7

    Article  Google Scholar 

  • Li Y-P, Chen L-Z, Wang Y-H (2005) Experimental research on pre-cracked marble under compression. Int J Solids Struct 42(9–10):2505–2516. doi:10.1016/j.ijsolstr.2004.09.033

    Article  Google Scholar 

  • Mellor M, Hawkes I (1971) Measurement of tensile strength by diametral compression of discs and annuli. Eng Geol 5(3):173–225. doi:10.1016/0013-7952(71)90001-9

    Article  Google Scholar 

  • Morgan S, Johnson C, Einstein H (2013) Cracking processes in Barre granite: fracture process zones and crack coalescence. Int J Fract 180(2):177–204. doi:10.1007/s10704-013-9810-y

    Article  Google Scholar 

  • Neville AM (2011) Properties of concrete, 5th edn. Pearson, England

    Google Scholar 

  • Rodríguez J, Navarro C, Sánchez-Gálvez V (1994) Splitting tests: an alternative to determine the dynamic tensile strength of ceramic materials. J Physique IV 4(C8):8

    Google Scholar 

  • Ross CA, Thompson PY, Tedesco JW (1989) Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater J 86(5):475–481

    Google Scholar 

  • Swab J, Yu J, Gamble R, Kilczewski S (2011) Analysis of the diametral compression method for determining the tensile strength of transparent magnesium aluminate spinel. Int J Fract 172(2):187–192. doi:10.1007/s10704-011-9655-1

    Article  Google Scholar 

  • Tedesco JW, Ross CA, Kuennen ST (1993) Experimental and numerical analysis of high strain rate splitting tensile tests. ACI Mater J 90(2):162–169

    Google Scholar 

  • Timoshenko S, Goodier JN (1951) Theory of elasticity, 2nd edn. McGraw-Hill, USA

    Google Scholar 

  • Wang Q, Li W, Song X (2006) A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB. Pure Appl Geophys 163(5):1091–1100. doi:10.1007/s00024-006-0056-8

    Article  Google Scholar 

  • Wong NY (2008) Crack coalescence in moulded gypsum and Carrara marble. PhD Thesis, Massachusetts Institute of Technology

  • Wong LNY, Einstein HH (2006) Fracturing behavior of prismatic specimens containing single flaws. Golden Rocks. In: Proceedings of 41st US Rock Mechanics Symposium—ARMA’s—50 years of rock mechanics, Omnipress, US

  • Wong LNY, Einstein HH (2009a) Process zone development associated with cracking processes in Carrara marble. In: Paper presented at the 9th International Conference on Analysis of Discontinuous Deformation: New Developments and Applications, Singapore: 581–588

  • Wong LNY, Einstein HH (2009b) Crack coalescence in moulded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng 42(3):475–511

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009c) Crack coalescence in moulded gypsum and Carrara marble: Part 2. Microscopic observations and interpretation. Rock Mech Rock Eng 42(3):513–545

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009d) Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min 46(2):239–249

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009e) Using high speed video imaging in the study of cracking processes in rock. Geotech Test J 32(2):164–180

    Google Scholar 

  • Wong LNY, Zou C (2012) Cracking processes in rocks under dynamic loading. In: Paper presented at the 7th Asian Rock Mechanics Symposium, an ISRM regional symposium. Seoul, Korea

  • Yanagidani T, Sano O, Terada M, Ito I (1978) The observation of cracks propagating in diametrically-compressed rock discs. Int J Rock Mech Min Sci Geomech Abstr 15(5):225–235. doi:10.1016/0148-9062(78)90955-5

    Article  Google Scholar 

  • Yu Y (2005) Questioning the validity of the Brazilian test for determining tensile strength of rocks. Chin J Rock Mech Eng 24(7):1150–1157 (in Chinese)

    Google Scholar 

  • Yu Y, Yin J, Zhong Z (2006) Shape effects in the Brazilian tensile strength test and a 3D FEM correction. Int J Rock Mech Min 43(4):623–627. doi:10.1016/j.ijrmms.2005.09.005

    Article  Google Scholar 

  • Zhang QB, Zhao J (2013a) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min 60:423–439. doi:10.1016/j.ijrmms.2013.01.005

    Google Scholar 

  • Zhang QB, Zhao J (2013b) Effect of loading rate on fracture toughness and failure micromechanisms in marble. Eng Fract Mech 102:288–309. doi:10.1016/j.engfracmech.2013.02.009

    Article  Google Scholar 

  • Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min 49:105–112. doi:10.1016/j.ijrmms.2011.10.004

    Article  Google Scholar 

  • Zou C, Wong LNY, Cheng Y (2012) The strength and crack behavior of the rock-like gypsum under high strain rate. In: Paper presented at the ARMA, 46th US Rock Mechanics/Geomechanics Symposium Chicago, 24–27 June, 2012

Download references

Acknowledgments

The authors are grateful for the financial support under an Academic Research Fund (AcRF) tier 1 grant (RG19/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjiang Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, L.N.Y., Zou, C. & Cheng, Y. Fracturing and Failure Behavior of Carrara Marble in Quasistatic and Dynamic Brazilian Disc Tests. Rock Mech Rock Eng 47, 1117–1133 (2014). https://doi.org/10.1007/s00603-013-0465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-013-0465-9

Keywords

Navigation