Skip to main content
Log in

Water Saturation Effects on the Brazilian Tensile Strength of Gypsum and Assessment of Cracking Processes Using High-Speed Video

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This study investigates the water weakening effect on the tensile strength, as well as the fracturing behavior, of an artificially molded Hydrocal B-11 gypsum rock. Brazilian disc tests, with the aid of a high-speed video system to monitor and record the cracking processes, are conducted on dry and wet specimens to determine their tensile strengths. The dry specimens are oven-dried, while the wet specimens are prepared by soaking in water for 1, 3, and 10 weeks to achieve different levels of water content. The test results show that the tensile strength drops to nearly half of its dry value after being soaked in water for only 1 week. The tensile strength reduces only slightly further after the specimens have been immersed in water for 3 and 10 weeks. An analysis of the recorded high-speed footage shows that the primary crack initiates at the center as observed from the surface for the majority of the tested specimens. Most importantly, the cracking processes of dry and wet specimens are distinctly different with regard to the speed of crack propagation and the number of cracks developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akazawa T (1943) New test method for evaluating internal stress due to compression of concrete (the splitting tension test). J Jpn Soc Civil Eng 29:777–787

    Google Scholar 

  • Andreev GE (1991a) A review of the Brazilian test for rock tensile strength determination. Part I: calculation formula. Min Sci Technol 13(3):445–456. doi:10.1016/0167-9031(91)91006-4

    Article  Google Scholar 

  • Andreev GE (1991b) A review of the Brazilian test for rock tensile strength determination. Part II: contact conditions. Min Sci Technol 13(3):457–465. doi:10.1016/0167-9031(91)91035-G

    Article  Google Scholar 

  • ASTM International (2008) D3967-08: standard test method for splitting tensile strength of intact rock core specimens. ASTM International, West Conshohocken

    Google Scholar 

  • Barla G, Innaurato N (1973) Indirect tensile testing of anisotropic rocks. Rock Mech 5(4):215–230

    Article  Google Scholar 

  • Bazant ZP, Kazemi MT, Hasegawa T, Mazars J (1991) Size effect in Brazilian split-cylinder tests: measurements and fracture analysis. ACI Mater J 88(3):325–332

    Google Scholar 

  • Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888. doi:10.1016/S0148-9062(98)00005-9

    Article  Google Scholar 

  • Cai M, Kaiser PK (2004) Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with preexisting cracks. Int J Rock Mech Min Sci 41(Suppl 1):478–483. doi:10.1016/j.ijrmms.2004.03.086

  • Carneiro FLLB (1943) A new method to determine the tensile strength of concrete. In: Paper presented at the 5th meeting of the Brazilian Association for Technical Rules, 3d. Section. (Associação Brasileira de Normas Técnicas)

  • Chen C-S, Pan E, Amadei B (1998) Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int J Rock Mech Min Sci 35(1):43–61. doi:10.1016/s0148-9062(97)00329-x

    Article  Google Scholar 

  • Chen S, Yue ZQ, Tham LG (2004a) Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int J Rock Mech Min Sci 41(6):939–957. doi:10.1016/j.ijrmms.2004.03.002

    Article  Google Scholar 

  • Chen S, Yue ZQ, Tham LG, Lee PKK (2004b) Modeling of the indirect tensile test for inhomogeneous granite using a digital image-based numerical method. Int J Rock Mech Min Sci 41(Suppl 1):2B 01 1–6

    Google Scholar 

  • Chou Y-C, Chen C-S (2008) Determining elastic constants of transversely isotropic rocks using Brazilian test and iterative procedure. Int J Numer Anal Meth Geomech 32(3):219–234. doi:10.1002/nag.619

    Article  Google Scholar 

  • Claesson J, Bohloli B (2002) Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution. Int J Rock Mech Min Sci 39(8):991–1004. doi:10.1016/s1365-1609(02)00099-0

    Article  Google Scholar 

  • Colback PSB (1966) An analysis of brittle fracture initiation and propagation in the Brazilian test. In: Paper presented at the 1st congress of the International Society of Rock Mechanics, Lisbon, Portugal

  • Dorogoy A, Banks-Sills L (2005) Effect of crack face contact and friction on Brazilian disk specimens—a finite difference solution. Eng Fract Mech 72(18):2758–2773. doi:10.1016/j.engfracmech.2005.05.005

    Article  Google Scholar 

  • Dube AK, Singh B (1972) Effect of humidity on tensile strength of sandstone. J Mines Metals Fuels 20(1):8–10

    Google Scholar 

  • Erarslan N, Williams DJ (2012) Experimental, numerical and analytical studies on tensile strength of rocks. Int J Rock Mech Min Sci 49(1):21–30. doi:10.1016/j.ijrmms.2011.11.007

    Article  Google Scholar 

  • Erguler ZA, Ulusay R (2009) Water-induced variations in mechanical properties of clay-bearing rocks. Int J Rock Mech Min Sci 46(2):355–370. doi:10.1016/j.ijrmms.2008.07.002

    Article  Google Scholar 

  • Exadaktylos GE, Kaklis KN (2001) Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically. Int J Rock Mech Min Sci 38(2):227–243. doi:10.1016/s1365-1609(00)00072-1

    Article  Google Scholar 

  • Fairbairn EMR, Ulm F-J (2002) A tribute to Fernando L. L. B. Carneiro (1913–2001) engineer and scientist who invented the Brazilian test. Mater Struct 35(3):195–196. doi:10.1007/bf02533589

    Article  Google Scholar 

  • Fairhurst C (1964) On the validity of the ‘Brazilian’ test for brittle materials. Int J Rock Mech Min Sci Geomech Abstr 1(4):535–546. doi:10.1016/0148-9062(64)90060-9

    Article  Google Scholar 

  • Hiramatsu Y, Oka Y (1966) Determination of the tensile strength of rock by a compression test of an irregular test piece. Int J Rock Mech Min Sci Geomech Abstr 3(2):89–90. doi:10.1016/0148-9062(66)90002-7

    Article  Google Scholar 

  • Hobbs DW (1965) An assessment of a technique for determining the tensile strength of rock. Br J Appl Phys 16(2):259–268

    Article  Google Scholar 

  • Hudson JA (1969) Tensile strength and the ring test. Int J Rock Mech Min Sci Geomech Abstr 6(1):91–97. doi:10.1016/0148-9062(69)90029-1

    Article  Google Scholar 

  • Hudson JA, Brown ET, Rummel F (1972) The controlled failure of rock discs and rings loaded in diametral compression. Int J Rock Mech Min Sci Geomech Abstr 9(2):241–248. doi:10.1016/0148-9062(72)90025-3

    Article  Google Scholar 

  • International Society for Rock Mechanics (ISRM) (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the Commission on Testing Methods, International Society for Rock Mechanics, compilation arranged by the ISRM Turkish National Group, Ankara, Turkey

  • Jaeger JC (1967) Failure of rocks under tensile conditions. Int J Rock Mech Min Sci Geomech Abstr 4(2):219–227. doi:10.1016/0148-9062(67)90046-0

    Article  Google Scholar 

  • Jaeger JC, Hoskins ER (1966a) Rock failure under the confined Brazilian test. J Geophys Res 71(10):2651–2659

    Article  Google Scholar 

  • Jaeger JC, Hoskins ER (1966b) Stresses and failure in rings of rock loaded in diametral tension or compression. Br J Appl Phys 17(5):685–692

    Article  Google Scholar 

  • Janeiro RP, Einstein HH (2010) Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression). Int J Fracture 164(1):83–102. doi:10.1007/s10704-010-9457-x

    Article  Google Scholar 

  • Karni J, Karni EY (1995) Gypsum in construction: origin and properties. Mater Struct 28(2):92–100. doi:10.1007/BF02473176

    Article  Google Scholar 

  • Lajtai EZ (1980) Tensile strength and its anisotropy measured by point and line-loading of sandstone. Eng Geol 15(3–4):163–171. doi:10.1016/0013-7952(80)90032-0

    Article  Google Scholar 

  • Lavrov A, Vervoort A (2002) Theoretical treatment of tangential loading effects on the Brazilian test stress distribution. Int J Rock Mech Min Sci 39(2):275–283. doi:10.1016/s1365-1609(02)00010-2

    Article  Google Scholar 

  • Li D, Wong LNY (2013) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng 46(2):269–287. doi:10.1007/s00603-012-0257-7

    Article  Google Scholar 

  • Li D, Wong LNY, Liu G, Zhang XP (2012) Influence of water content and anisotropy on the strength and deformability of low porosity meta-sedimentary rocks under triaxial compression. Eng Geol 126:46–66. doi:10.1016/j.enggeo.2011.12.009

    Article  Google Scholar 

  • Liu G, Wong LNY (2012) Discussion of water content and related physical properties of rock. In: Proceedings of EUROCK 2012, Stockholm, Sweden, 28–30 May 2012

  • Markides CF, Pazis DN, Kourkoulis SK (2011) Influence of friction on the stress field of the Brazilian tensile test. Rock Mech Rock Eng 44(1):113–119. doi:10.1007/s00603-010-0115-4

    Article  Google Scholar 

  • Mellor M, Hawkes I (1971) Measurement of tensile strength by diametral compression of discs and annuli. Eng Geol 5(3):173–225. doi:10.1016/0013-7952(71)90001-9

    Article  Google Scholar 

  • Nelson RA (1968) Modelling a jointed rock mass. MSc Thesis, Massachusetts Institute of Technology, 218 pp

  • Newman DA, Bennett DG (1990) The effect of specimen size and stress rate for the Brazilian test—a statistical analysis. Rock Mech Rock Eng 23(2):123–134. doi:10.1007/bf01020397

    Article  Google Scholar 

  • Ojo O, Brook N (1990) The effect of moisture on some mechanical properties of rock. Min Sci Technol 10(2):145–156. doi:10.1016/0167-9031(90)90158-O

    Article  Google Scholar 

  • Padevět P, Tesárek P, Plachý T (2011) Evolution of mechanical properties of gypsum in time. Int J Mech 5(1):1–9

    Google Scholar 

  • Pandey P, Singh DP (1986) Deformation of a rock in different tensile tests. Eng Geol 22(3):281–292. doi:10.1016/0013-7952(86)90029-3

    Article  Google Scholar 

  • Peng SS (1976) Stress analysis of cylindrical rock discs subjected to axial double point load. Int J Rock Mech Min Sci Geomech Abstr 13(3):97–101. doi:10.1016/0148-9062(76)90426-5

    Article  Google Scholar 

  • Reyes O, Einstein HH (1991) Failure mechanism of fractured rock—a fracture coalescence model. In: Wittke W (ed) Proceedings of the 7th International Congress of Rock Mechanics, Aachen, Germany, September 1991. Balkema, Rotterdam, vol 1, pp 333–340

  • Sagong M, Bobet A (2002) Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci 39:229–241. doi:10.1016/S1365-1609(02)00027-8

    Article  Google Scholar 

  • Satoh Y (1987) Position and load of failure in Brazilian test, a numerical analysis by Griffith criterion. J Soc Mater Sci Japan 36(410):1219–1224

    Article  Google Scholar 

  • Shakoor A, Barefield EH (2009) Relationship between unconfined compressive strength and degree of saturation for selected sandstones. Environ Eng Geosci 15(1):29–40

    Article  Google Scholar 

  • Sundaram PN, Corrales JM (1980) Brazilian tensile strength of rocks with different elastic properties in tension and compression. Int J Rock Mech Min Sci Geomech Abstr 17(2):131–133. doi:10.1016/0148-9062(80)90265-x

    Article  Google Scholar 

  • Tavallali A, Vervoort A (2010a) Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions. Int J Rock Mech Min Sci 47(2):313–322. doi:10.1016/j.ijrmms.2010.01.001

    Article  Google Scholar 

  • Tavallali A, Vervoort A (2010b) Failure of layered sandstone under Brazilian test conditions: effect of micro-scale parameters on macro-scale behaviour. Rock Mech Rock Eng 43(5):641–653. doi:10.1007/s00603-010-0084-7

    Article  Google Scholar 

  • Van Eeckhout EM (1976) The mechanisms of strength reduction due to moisture in coal mine shales. Int J Rock Mech Min Sci Geomech Abstr 13:61–67

    Article  Google Scholar 

  • Vutukuri VS (1974) The effect of liquids on the tensile strength of limestone. Int J Rock Mech Min Sci Geomech Abstr 11(1):27–29. doi:10.1016/0148-9062(74)92202-5

    Article  Google Scholar 

  • Wijk G (1978) Some new theoretical aspects of indirect measurements of the tensile strength of rocks. Int J Rock Mech Min Sci Geomech Abstr 15(4):149–160. doi:10.1016/0148-9062(78)91221-4

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2006) Fracturing behavior of prismatic specimens containing single flaws. Golden Rocks 2006, The 41st US Symposium on Rock Mechanics (USRMS): 50 Years of Rock Mechanics—Landmarks and Future Challenges, Golden, Colorado, June 2006

  • Wong LNY, Einstein HH (2007) Coalescence behavior in Carrara marble and molded gypsum containing artificial flaw pairs under uniaxial compression. In: Proceedings of the 1st Canada-U.S. Rock Mechanics Symposium, Vancouver, British Columbia, Canada, 27–31 May 2007

  • Wong LNY, Einstein HH (2009a) Using high speed video imaging in the study of cracking processes in rock. Geotech Test J 32(2):164–180. doi:10.1520/GTJ101631

    Google Scholar 

  • Wong LNY, Einstein HH (2009b) Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min Sci 46(2):239–249. doi:10.1016/j.ijrmms.2008.03.006

    Article  Google Scholar 

  • Yanagidani T, Sano O, Terada M, Ito I (1978) The observation of cracks propagating in diametrically-compressed rock discs. Int J Rock Mech Min Sci Geomech Abstr 15(5):225–235. doi:10.1016/0148-9062(78)90955-5

    Article  Google Scholar 

  • Yilmaz I (2007) Differences in the geotechnical properties of two types of gypsum: alabastrine and porphyritic. Bull Eng Geol Environ 66(2):187–195. doi:10.1007/s10064-006-0055-0

    Article  Google Scholar 

  • Yilmaz I (2010) Influence of water content on the strength and deformability of gypsum. Int J Rock Mech Min Sci 47(2):342–347. doi:10.1016/j.ijrmms.2009.09.002

    Article  Google Scholar 

  • Yilmaz I, Karacan E (2005) Slaking durability and its effect on the doline formation in the gypsum. Environ Geol 47(7):1010–1016. doi:10.1007/s00254-005-1234-1

    Article  Google Scholar 

  • You M, Chen X, Su C (2011) Brazilian splitting strengths of discs and rings of rocks in dry and saturated conditions. Yanshilixue Yu Gongcheng Xuebao (Chin J Rock Mech Eng) 30(3):464–472 (in Chinese)

    Google Scholar 

  • Yu Y, Meng C (2005) 3-D distribution of tensile stress in rock specimens for the Brazilian test. J Univ Sci Technol Beijing Miner Metall Mater (Eng Ed) 12(6):495–499

    Google Scholar 

  • Yu Y, Yin J, Zhong Z (2006) Shape effects in the Brazilian tensile strength test and a 3D FEM correction. Int J Rock Mech Min Sci 43(4):623–627. doi:10.1016/j.ijrmms.2005.09.005

    Article  Google Scholar 

  • Yu Y, Zhang J, Zhang J (2009) A modified Brazilian disk tension test. Int J Rock Mech Min Sci 46(2):421–425. doi:10.1016/j.ijrmms.2008.04.008

    Article  Google Scholar 

  • Yue ZQ, Chen S, Tham LG (2003) Finite element modeling of geomaterials using digital image processing. Comput Geotech 30(5):375–397

    Article  Google Scholar 

  • Zhu WC, Tang CA (2006) Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int J Rock Mech Min Sci 43(2):236–252. doi:10.1016/j.ijrmms.2005.06.008

    Article  Google Scholar 

  • Zou C, Wong LNY, Cheng Y (2012) The strength and crack behaviour of molded gypsum under high strain rate. In: Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, Chicago, Illinois, June 2012. ARMA, Chicago, pp 12–339

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Ngai Yuen Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, L.N.Y., Jong, M.C. Water Saturation Effects on the Brazilian Tensile Strength of Gypsum and Assessment of Cracking Processes Using High-Speed Video. Rock Mech Rock Eng 47, 1103–1115 (2014). https://doi.org/10.1007/s00603-013-0436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-013-0436-1

Keywords

Navigation