Skip to main content
Log in

An Approach for Modeling Rock Discontinuous Mechanical Behavior Under Multiphase Fluid Flow Conditions

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

In this paper, the two computer codes TOUGH2 and RDCA (for “rock discontinuous cellular automaton”) are integrated for coupled hydromechanical analysis of multiphase fluid flow and discontinuous mechanical behavior in heterogeneous rock. TOUGH2 is a well-established code for geohydrological analysis involving multiphase, multicomponent fluid flow and heat transport; RDCA is a numerical model developed for simulating the nonlinear and discontinuous geomechanical behavior of rock. The RDCA incorporates the discontinuity of a fracture independently of the mesh, such that the fracture can be arbitrarily located within an element, while the fluid pressure calculated by TOUGH2 can be conveniently applied to fracture surfaces. We verify and demonstrate the coupled TOUGH–RDCA simulator by modeling a number of simulation examples related to coupled multiphase flow and geomechanical processes associated with the deep geological storage of carbon dioxide—including modeling of ground surface uplift, stress-dependent permeability, and the coupled multiphase flow and geomechanical behavior of fractures intersecting the caprock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Börgesson L (1996) ABAQUS. Dev Geotech Eng 79:565–570

    Article  Google Scholar 

  • Bower K, Zyvoloski G (1997) A numerical model for thermo-hydro-mechanical coupling in fractured rock. Int J Rock Mech Min Sci 34(8):1201–1211

    Article  Google Scholar 

  • Corey AT (1954) The interrelation between gas and oil relative permeabilities. Prod Month 19(1):38–41

    Google Scholar 

  • Feng XT, Pan PZ et al (2006) Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton. Int J Rock Mech Min Sci 43(7):1091–1108

    Article  Google Scholar 

  • Ferronato M, Gambolati G et al (2010) Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields. Energy Convers Manage 51(10):1918–1928

    Article  Google Scholar 

  • Guvanasen V, Chan T (1995) A new three-dimensional finite-element analysis of hysteresis thermohydromechanical deformation of fractured rock mass with dilatance in fractures, Vienna, Austria, pp 347–422

  • Israelsson JI (1996a) Short description of FLAC version 3.2. Dev Geotech Eng 79:513–522

    Article  Google Scholar 

  • Israelsson JI (1996b) Short descriptions of UDEC and 3DEC. Dev Geotech Eng 79:523–528

    Article  Google Scholar 

  • Itasca Consulting Group I (2000) PFC3D user’s guide. Itasca Consulting Group Inc., Mineapolis

    Google Scholar 

  • Kohl T, Hopkirk R (1995) The finite element program “FRACTure” for the simulation of Hot Dry Rock reservoir behavior. Geothermics 24(3):345–359

    Article  Google Scholar 

  • Neuzil C (2003) Hydromechanical coupling in geologic processes. Hydrogeol J 11(1):41–83

    Article  Google Scholar 

  • Nguyen T (1996) Description of the computer code FRACON. Dev Geotech Eng 79:539–544

    Article  Google Scholar 

  • Noorishad J, Tsang C et al (1984) Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach. J Geophy Res 89(B12):10365

    Article  Google Scholar 

  • Ohnishi Y, Kobayashi A et al (1996) Coupled thermo-hydro-mechanical processes of fractured media. In: Developments in Geotechnical Engineering, vol 79. Elsevier, pp 545–549

  • Olivella S, Carrera J et al (1994) Nonisothermal multiphase flow of brine and gas through saline media. Transp Porous Media 15(3):271–293

    Article  Google Scholar 

  • Pan PZ, Feng XT et al (2009a) Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton. Environ Geol 57(6):1299–1311

    Article  Google Scholar 

  • Pan PZ, Feng XT et al (2009b) Study of failure and scale effects in rocks under uniaxial compression using 3D cellular automata. Int J Rock Mech Min Sci 46(4):674–685

    Article  Google Scholar 

  • Pan P-Z, Yan F et al (2012) Modeling the cracking process of rocks from continuity to discontinuity using a cellular automaton. Comput Geosci 42:87–99

    Article  Google Scholar 

  • Pruess K, Moridis G et al (1999) TOUGH2 user’s guide, version 2.0, Lawrence Berkeley National Laboratory Berkeley, CA

  • Pruess K, Spycher N (2007) ECO2 N-A fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers. Energy Convers Manag 48(6):1761–1767

    Article  Google Scholar 

  • Rohmer J, Seyedi DM (2010) Coupled large scale hydromechanical modelling for caprock failure risk assessment of CO2 storage in deep saline aquifers. Oil Gas Sci Technol Revue de l’Institut Français du Pétrole 65(3):503–517

    Article  Google Scholar 

  • Rutqvist J (2011) Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Comput Geosci 37(6):739–750

    Article  Google Scholar 

  • Rutqvist J (2012) The geomechanics of CO2 storage in deep sedimentary formations. Geotech Geol Eng 30(3):525–551

    Article  Google Scholar 

  • Rutqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11(1):7–40

    Article  Google Scholar 

  • Rutqvist J, Tsang CF (2002) A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Environ Geol 42(2):296–305

    Article  Google Scholar 

  • Rutqvist J, Tsang CF (2012) Multiphysics processes in partially saturated fractured rock: experiments and models from Yucca Mountain. Rev Geophys 50(3):RG3006

    Article  Google Scholar 

  • Rutqvist J, Börgesson L et al (2001) Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models. Int J Rock Mech Min Sci 38(1):105–127

    Article  Google Scholar 

  • Rutqvist J, Wu YS et al (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39(4):429–442

    Article  Google Scholar 

  • Rutqvist J, Vasco DW et al (2010) Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria. Int J Greenhouse Gas Control 4(2):225–230

    Article  Google Scholar 

  • Swenson D, DuTeau R et al (1997) A coupled model of fluid flow in jointed rock applied to simulation of a hot dry rock reservoir. Int J Rock Mech Min Sci Geomech Abstr 34:308

    Google Scholar 

  • Thomas HR, Sansom MR (1995) Fully coupled analysis of heat, moisture, and air transfer in unsaturated soil. J Eng Mech 121:392

    Article  Google Scholar 

  • Tran D, Nghiem L et al (2010) Study of geomechanical effects in deep aquifer CO2 storage. In: 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium, Salt Lake City, Utah, 27–30 June 2010

  • Tsang CF (1999) Linking thermal, hydrological, and mechanical processes in fractured rocks 1. Annu Rev Earth Planet Sci 27(1):359–384

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Wang W, Kolditz O (2007) Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media. Int J Numer Meth Eng 69(1):162–201

    Article  Google Scholar 

Download references

Acknowledgments

This work was finically supported by the National Natural Science Foundation of China (Nos. 10972231, 41272349, 11002154) and the National Basic Research Program of China under Grant No. 2010CB732006, and in part, supported by the US Department of Energy under contract No. DE-AC02-05CH11231. We thank Daniel Hawkes at LBNL for reviewing the initial version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Zhi Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, PZ., Rutqvist, J., Feng, XT. et al. An Approach for Modeling Rock Discontinuous Mechanical Behavior Under Multiphase Fluid Flow Conditions. Rock Mech Rock Eng 47, 589–603 (2014). https://doi.org/10.1007/s00603-013-0428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-013-0428-1

Keywords

Navigation