Skip to main content
Log in

On the Time-Development of Sulphate Hydration in Anhydritic Swelling Rocks

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Anhydritic claystones are among the most problematic rocks in tunnelling. Their swelling has caused serious damage and high repair costs in a number of tunnels, especially in Switzerland and southwest Germany. The swelling is usually attributed to the transformation of anhydrite into gypsum. It is a markedly time-dependent process which might take several decades to complete in nature. The present paper focusses on simultaneous anhydrite dissolution and gypsum precipitation in a closed system, i.e. disregarding the transport processes that may also be important for the evolution of the swelling process. The paper begins with a presentation of the governing equations and continues with parametric studies in order to investigate the role of the initial volumetric fractions of the constituents and the specific surface areas of the minerals involved. A simplified model for the hydration of anhydrite is also proposed, which identifies the governing process and the duration of the swelling process. Finally, parametric studies are performed in order to investigate the effect of the anhydrite surface being sealed by the formation of gypsum. The latter slows down the swelling process considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Mineral surface area in contact with water

A :

Shape factor of parellelepipedic particles

a A :

Shape factor of parellelepipedic anhydrite particles

a G :

Shape factor of parellelepipedic gypsum particles

b :

Shape factor of parellelepipedic particles

b A :

Shape factor of parellelepipedic anhydrite particles

b G :

Shape factor of parellelepipedic gypsum particles

c :

Ion concentration

\(\tilde{c}\) :

Normalized concentration

\(c_{0}\) :

Initial concentration

\(\tilde{c}_{0}\) :

Normalized initial concentration

c eq :

Equilibrium concentration

c eq,A :

Anhydrite equilibrium concentration

c eq,G :

Gypsum equilibrium concentration

\(\tilde{c}_{{{\text{eq}},{\text{G}}}}\) :

Normalized gypsum equilibrium concentration

c max :

Maximum concentration

F :

Specific surface area

F A :

Anhydrite specific surface area

F P :

Specific surface area of particles consisting of inert solid and gypsum

F S :

Inert solid specific surface area

J :

Diffusive flux

K :

Reaction rate constant

\(\tilde{k}\) :

Diffusion coefficient

k A :

Reaction rate constant for anhydrite dissolution

k G :

Reaction rate constant for gypsum precipitation

m :

Mass per unit volume of the mixture

m A :

Anhydrite mass per unit volume of the mixture

m A0 :

Initial anhydrite mass per unit volume of the mixture

m I :

Ion mass per unit volume of the mixture

m I0 :

Initial ion mass per unit volume of the mixture

m G :

Gypsum mass per unit volume of the mixture

m G0 :

Initial gypsum mass per unit volume of the mixture

m W :

Water mass per unit volume of the mixture

m W0 :

Initial water mass per unit volume of the mixture

M :

Mass

n G :

Porosity of the gypsum layer

s :

Distance of the mineral surface from its initial surface

S 0 :

Characteristic length (thickness and diameter for parellelepipedic and spherical particles, respectively)

s A :

Thickness of dissolved anhydrite

\(\bar{s}_{\text{A}}\) :

Normalized thickness of dissolved anhydrite

S A :

Characteristic length of anhydrite particles

\(\bar{S}_{\text{A}}\) :

Normalized characteristic length of anhydrite particles

S A0 :

Initial characteristic length of anhydrite particles

s G :

Gypsum layer thickness

\(\bar{s}_{\text{G}}\) :

Normalized gypsum layer thickness

S G0 :

Initial characteristic length of gypsum particles

S G,A :

Characteristic length of gypsum particles for growth on anhydrite

\(\bar{S}_{\text{G,A}}\) :

Normalized characteristic length of gypsum particles for growth on anhydrite

S G,G :

Characteristic length of gypsum particles for growth on gypsum

\(\bar{S}_{\text{G,G}}\) :

Normalized characteristic length of gypsum particles for growth on gypsum

S G,S :

Characteristic length of gypsum particles for growth on inert minerals

\(\bar{S}_{\text{G,S}}\) :

Normalized characteristic length of gypsum particles for growth on inert minerals

S S :

Inert solid particles diameter

\(\bar{S}_{\text{S}}\) :

Normalized diameter of inert solid particles

T :

Time

t d :

Time at which sealing becomes the relevant mechanism

T G :

Gypsum layer tortuosity

V :

Volume

V tot :

Total volume of the mixture

V tot,0 :

Initial total volume of the mixture

α :

Order of chemical reaction

α A :

Order of reaction for anhydrite dissolution

α G :

Order of reaction for gypsum precipitation

Λ:

Dimensionless parameter

\(\bar{\Uplambda }\) :

Dimensionless parameter

Λ* :

Dimensionless parameter

Φ :

Volume fraction

ϕ A :

Anhydrite volume fraction

ϕ A0 :

Initial anhydrite volume fraction

ϕ A0,crit :

Critical initial anhydrite volume fraction

ϕ G :

Gypsum volume fraction

ϕ G0 :

Initial gypsum volume fraction

ϕ G,A :

Volume fraction of gypsum grown on anhydrite particles

ϕ G,G :

Volume fraction of gypsum grown on gypsum particles

ϕ G,S :

Volume fraction of gypsum grown on inert solid particles

ϕ P :

Volume fraction of particles consisting of inert solid and gypsum

ϕ S :

Inert solid volume fraction

ϕ W :

Water volume fraction

ϕ W0 :

Initial water volume fraction

ρ:

Density

ρ A :

Anhydrite density

ρ G :

Gypsum density

ρ S :

Inert solid density

ρ W :

Water density

τ :

Dimensionless time

\(\bar{\tau }\) :

Dimensionless time

References

  • Amstad C, Kovári K (2001) Untertagbau in quellfähigem Fels. Schlussbericht Forschungsauftrag 52/94 des Bundesamts für Strassen ASTRA

  • Anagnostou G, Pimentel E, Serafeimidis K (2010) Swelling of sulphatic claystones—some fundamental questions and their practical relevance. Geomech Tunn 3 (5):567–572

    Google Scholar 

  • Anderson GM (1996) Thermodynamics of natural systems. John Wiley and Sons, Inc., University of Toronto

    Google Scholar 

  • Andreae C (1956). Gebirgsdruck und Tunnelbau. Schweizerische Bauzeitung 74:107–110

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A. A. Balkema, Rotterdam

    Book  Google Scholar 

  • Atkins P, de Paula J (2006) Atkins‘Physical Chemistry, 8th edn. Oxford University Press, Oxford

  • Bezjak A, Jelenic I (1980) On the determination of rate constants for hydration processes in cement pastes. Cem Concr Res 10:553–563

    Article  Google Scholar 

  • Bishnoi S (2008) Vector modelling of hydrating cement microstructure and kinetics. Dissertation No 4093, Ècole Polytechnique Fèdèrale de Lausanne

  • Bishnoi S, Scrivener LK (2009) Studying nucleation and growth kinetics of alite hydration using μic. Cem Concr Res 29:849–860

    Article  Google Scholar 

  • Böhm M, Devinny J, Jahani F, Rosen G (1998) On a moving-boundary system modeling corrosion in sewer pipes. Appl Math Comput 92:247–269

    Article  Google Scholar 

  • Böhringer J, Jenni JP, Hürlimann P, Resele G, Grauer R, Norbert J (1990) Anhydritvorkommen als Wirtgestein für die Lagerung schwach- und mittelaktiver Abfälle dargestellt am Beispiel des Bois de la Glaive. NAGRA, Technischer Bericht, pp 88–15

  • Brantley SL, Kubicki JD, White AF (2008) Kinetics of water–rock interaction. Springer, New York

  • Einstein HH (1996) Tunnelling in difficult ground—swelling behaviour and identification of swelling rocks. Rock Mech and Rock Eng 29(3):113–124

    Article  Google Scholar 

  • Freyer D, Voigt W (2003) Crystallization and phase stability of CaSO4—based salts. Monatsh Chem 134:693–719

    Article  Google Scholar 

  • Gassmann J, Gysel M, Schneider JF (1979) Anhydrit als Wirtgestein für die Endlagerung radioaktiver Abfälle in der Schweiz. Technical Report Nagra, No. 12, Baden

  • Grob H (1972) Schwelldruck im Belchentunnel. Internationales Symposium für Untertagbau, Luzern, pp 99–119

    Google Scholar 

  • Henke KF, Kaiser W (1975) Zusammenfassung und Deutung der Ergeb-nisse in Bezug auf Sohlhebungen beim Tunnelbau im Gipskeuper. Durch-führung eines felsmechanischen Grossversuches in der Nordröhre des Wagenburgtunnels in Stuttgart. Schriftenhefte Strassenbau und Strassen-verkehrs-tech-nik 184:185–195

    Google Scholar 

  • Henke KF, Kaiser W, Nagel D (1975) Geomechanische Untersuchungen im Gips-keuper. Durchführung eines felsmechanischen Grossversuches in der Nord-röhre des Wagenburgtunnels in Stuttgart. Schriftenhefte Strassenbau und Strassen-verkehrs-technik 184:149–162

    Google Scholar 

  • Kontrec J, Kralj D, Brečević L (2002) Transformation of anhydrous calcium sulphate into calcium sulphate dihydrate in aqueous solutions. J Cryst Growth 240:203–211

    Article  Google Scholar 

  • Langbein R, Peter H, Schwahn H (1982) Karbonat und Sulfatgesteine. Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  • Lasaga CA (1986) Metamorphic reaction rate laws and development of isograds. Miner Mag 50:359–373

    Article  Google Scholar 

  • Lasaga CA (1998) Kinetic theory in earth sciences. Princeton University Press, NJ

    Google Scholar 

  • Lasaga CA, Rye DM (1993) Fluid flow and chemical reaction kinetics in metamorphic systems. Am J Sci 293:361–404

    Article  Google Scholar 

  • Li YH, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta 38:703–714

    Article  Google Scholar 

  • Madsen FT, Nüesch R (1990) Langzeitverhalten von Tongesteinen und tonigen Sulfatgesteinen. Mitteilungen des Institutes für Grundbau und Bodenmechanik, Eidgenössische Technische Hochschule Zürich, Nr.140

  • Müller WH, Briegel U (1977) Experimentelle Untersuchungen an Anhydrit. Bericht Nr. 2. Geol. Institut der ETH Zürich, Arbeitsgruppe Anhydrite der Nagra

  • Mullin JW (2001) Crystallization, 4th edn, Butterworth-Heinemann, Oxford

  • Nancollas GH, Purdie N (1964) The kinetics of crystal growth. Q Rev Chem Soc 18:1–20

    Article  Google Scholar 

  • Pignat C, Navi P, Scrivener K (2005) Simulation of cement paste microstructure hydration pore space characterization and permeability determination. Mater Struct 38:459–466

    Google Scholar 

  • Sahores J (1962) Contribution à l’ ètude des phènomenes mèchaniques accompagnant l’ hydratation de l’ anhydrite. Dissertation, Revue des matèriaux de construction

  • Serafeimidis K, Anagnostou G (2012a) On the kinetics of the chemical reactions underlying the swelling of anhydritic rocks. Eurock 2012, Stockholm

  • Serafeimidis K, Anagnostou G (2012b) Simultaneous anhydrite dissolution and gypsum precipitation in a closed swelling rock system. ARMA 2012, Chicago

  • Steefel CI, Lasaga CA (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am J Sci 294:529–592

    Article  Google Scholar 

  • Steefel CI, Van Cappellen P (1990) A new kinetic approach to modeling water-rock interaction: the role of nucleation, precursors and Ostwald ripening. Geochemica et Cosmochimica 54:2657–2677

    Article  Google Scholar 

  • Wiesmann E (1914) Über die Stabilität von Tunnelmauwerk unter Berücksichtigung der Erfahrungen beim Bau des Hauenstein-Basistunnel. Schweizerische Bauzeitung 64(3):27–32

    Google Scholar 

Download references

Acknowledgments

This paper evolved within the framework of the research project ‘Modelling of anhydritic swelling claystones’ which is being carried out at the ETH Zurich, being financed by the Swiss National Science Foundation (SNF) and the Swiss Federal Roads Office (FEDRO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Serafeimidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serafeimidis, K., Anagnostou, G. On the Time-Development of Sulphate Hydration in Anhydritic Swelling Rocks. Rock Mech Rock Eng 46, 619–634 (2013). https://doi.org/10.1007/s00603-013-0376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-013-0376-9

Keywords

Navigation