Stabilisation of the Excavation Face in Shallow Tunnels Using Fibreglass Dowels

Abstract

Stability of the excavation face in shallow tunnels excavated in poor rock is at present a relevant problem in tunnelling. Even though face reinforcement with fibreglass dowels has proved to be efficient, there is still no reliable routine design method available. A new calculation procedure is illustrated in this paper for the analysis of face reinforcement with fibreglass dowels in shallow tunnels. The procedure is based on the limit equilibrium method applied to the rock core ahead of the face, and it offers a detailed evaluation of the interaction between each reinforcement element and the surrounding rock. The main calculation result concerns the safety factor of the excavation face with dowel reinforcement. On the basis of this safety factor, it is possible to identify the appropriate dowel lengths and the number of dowels. The procedure has been applied to two real cases, and satisfactory results have been obtained.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Anagnostou G, Kovari K (1996) Face stability conditions with earth-pressure-balanced shields. Tunn Undergr Space Technol 11:165–173

    Article  Google Scholar 

  2. Barla G, Bonini M, Lombardi F (2010) Analisi della stabilità al fronte di scavo di gallerie di grande sezione. In: Barla G (ed) Proc. of MIR 2010, Torino

  3. Broms BB, Bennermark H (1967) Stability of clay at vertical openings. J Soil Mech Found Div ASCE 93:71–94

    Google Scholar 

  4. Calvello M, Taylor RN (1999) Centrifuge modelling of a pile-reinforced tunnel heading. In: Balkema (ed) Proc. of geotechnical aspect of underground construction in soft rock, Rotterdam, pp 313–318

  5. Constantin B, Durand JP, Thöne M (1988) Progrès technologiques dans le cadre de l’utilisation de la méthode du prédécoupage mécanique à Toulon. AFTES Journées d’études Int de Chambéry 1988:171–180

    Google Scholar 

  6. Dias D, Kastner R (2005) Modélisation numérique de l’apport du renforcement par boulonnage du front de taille des tunnels. Can Geotech J 42:1656–1674

    Article  Google Scholar 

  7. Dias D, Kastner R, Dubois P (1997) Tunnel face reinforcement by bolting: strain approach using 3D analysis. In: Proceedings of the international conference on tunneling under difficult conditions, Basel

  8. Dias D, Kastner R, Dubois P (1998) Effects of pre-lining on the tunnel design, Proceedings of the International Conference on underground in modern infrastructure, Stockholm

  9. Dias D, Kastner R, Jassionnesse C (2002) Sols renforcés par boulonnage. Etude numérique et application au front de taille d’un tunnel profond. Geotechnique GE52:15–27

    Google Scholar 

  10. Frank R, Zhao SR (1982) Estimation des parameters pressiométriques de l’enfoncement sous charge axiale de pieux forés dans des sols fins. Bull Liaison Lapo P et Ch 119:17–24

    Google Scholar 

  11. Grasso P, Mahtab A, Pelizza S (1989) Riqualificazione della massa rocciosa: un criterio per la stabilizzazione di gallerie. Gallerie e grandi opere sotterraneo 39:35–41

    Google Scholar 

  12. Hallak RA, Garnier J, Leca E (1999) Experimental study of the stability of a tunnel face reinforced by bolts. In: Balkema (ed) Proc. of geotechnical aspect of underground construction in soft rock, Rotterdam, pp 1–5

  13. Hoek E, Bray JW, Boyd JM (1973) Methods for the rapid assessment of the stability of tridimensional rock slopes. Q J Eng Geol 6(1)

  14. Horn N (1961) Horizontaler erddruck auf senkrechte abschlussflächen von tunnelröhren. Landeskonferenz der ungarischen tiefbauindustrie, pp 7–16

  15. Itasca Consulting group (2006) FLAC3D: user’s manual

  16. Kamata H, Mashimo H (2003) Centrifuge model test of tunnel face reinforcement by bolting. Tunn Undergr Space Technol 18:205–212

    Article  Google Scholar 

  17. Kimura T, Mair RJ (1981) Centrifugal testing of model tunnels in soft clay. In: Proc. 10th international conference of soil mechanics and foundation engineering, vol 1, Stockholm, pp 319–322

  18. Kirsch A (2010) Experimental investigation of the face stability of shallow tunnels in sand. Acta Geotech 5:43–62

    Article  Google Scholar 

  19. Kolymbas D (2005) Tunnelling and tunnel mechanics. Springer, Berlin

    Google Scholar 

  20. Krause T (1987) Schildvortrieb mit flüssigkeits- und erdgestützter Ortsbrust. in Mitteilung des Instituts für Grundbau und Bodenmechanik. Technische Universität Braunschweig, no. 24

  21. Lancellotta R, Cavalera J (1999) Fondazioni. Mc Graw Hill, Milano

    Google Scholar 

  22. Leca E, Dormieux L (1990) Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Geotechnique 40:581–606

    Article  Google Scholar 

  23. Leca E, Panet M (1988) Application du Calcul a la rupture a la stabilite du front de taille d’un tunnel. Revue Francaise de Geotechnique 43:5–19

    Google Scholar 

  24. Lunardi P, Bindi R (2004) The evolution of reinforcement of the advance core using fibre-glass elements. Felsbau 22(4):8–19

    Google Scholar 

  25. Ng CWW, Lee GTK (2002) A tridimensional parametric study of the use of soil nails for stabilising tunnel faces. Comput Geotech 29:673–697

    Article  Google Scholar 

  26. Oreste PP (2009) Face stabilisation of shallow tunnels using fibreglass dowels. In: Proceedings of the Inst. of Civil Engineers. Geotech Eng 162, GE2, pp 95–109

  27. Oreste P, Cravero M (2008) An analysis of the action of dowels on the stabilization of rock blocks on underground excavation walls. Rock Mech Rock Eng 41(6):835–868

    Article  Google Scholar 

  28. Oreste PP, Peila D, Poma A (1999) Numerical study of low depth tunnel behaviour. In: Balkema AA (ed) World Tunnel Congress ‘99 Challenges for the 21st Century, Oslo (NOR), 29/5-3/6/1999, Rotterdam

  29. Robert J, Bernardet A (1996) Traversée souterraine de Toulon, Tunnel Nord, Calcul Note de calcul aux éléments finis

  30. Ruse NM (2004) Räumliche Betrachtung der Standsicherheit der Ortsbrust beim Tunnelvortrieb in Mitteilung des Instituts für Geotechnik. Universität Stuttgart, No. 51

  31. Wong H, Subrin D, Dias D (2000) Extrusion movements of a tunnel head reinforced by finite length bolts—a closed form solution using homogenisation approach. Int J Numer Anal Geomech 24(4):533–565

    Article  Google Scholar 

  32. Wong H, Trompille V, Dias D (2004) Extrusion analysis of a bolt-reinforced tunnel face with finite rock-bolt bond strength. Can Geotech J 41(2):326–341

    Article  Google Scholar 

  33. Wong H, Subrin D, Dias D (2006) Convergence-confinement analysis of a bolt-supported tunnel using homogenization method. Can Geotech J 43(5):462–483

    Article  Google Scholar 

  34. Yoo C (2002) Finite-element analysis of tunnel face reinforced by longitudinal pipes. Comput Geotech 29:73–94

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. P. Oreste.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oreste, P.P., Dias, D. Stabilisation of the Excavation Face in Shallow Tunnels Using Fibreglass Dowels. Rock Mech Rock Eng 45, 499–517 (2012). https://doi.org/10.1007/s00603-012-0234-1

Download citation

Keywords

  • Fibreglass dowels
  • Face reinforcement
  • Shallow tunnel
  • Limit equilibrium method
  • Safety factor