Skip to main content
Log in

Overcoming Squeezing in the Yacambú-Quibor Tunnel, Venezuela

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

The 5 m diameter 23.3 km long Yacambú-Quibor tunnel is designed to carry water through the Andes from the Yacambú dam in the wet tropical Orinoco basin to the semi-arid but fertile Quibor basin in western Venezuela. The tunnel is excavated in silicified and graphitic phyllites at depths of up to 1270 m below surface and extreme squeezing problems have been encountered. Construction involved 8 contracts extending over 32 years with breakthrough being achieved in July 2008. Several excavation methods and various lining designs were used over the years until the adoption of yielding support permitted the Owner and the Contractor to agree that only a circular section would be used and emphasis was placed on developing a routine construction procedure, irrespective of the rock conditions encountered at the face. This paper describes some of the rock engineering issues that were faced during the construction of this tunnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babendererde S (2002) Personal communication

  • NR Barton R Lien J Lunde (1974) ArticleTitleEngineering classification of rock masses for the design of tunnel support Rock Mech 6 IssueID4 189–239 Occurrence Handle10.1007/BF01239496

    Article  Google Scholar 

  • ZT Bieniawski (1973) ArticleTitleEngineering classification of jointed rock masses Trans S Afr Inst Civ Engrs 15 335–344

    Google Scholar 

  • Diederichs MS (2008) Personal Communication

  • Hoek E, Carranza-Torres CT, Corkum B (2002) Hoek-Brown failure criterion 2002 edn. Proceedings of the Fifth North American Rock Mechanics Symp., Toronto, Canada, Vol. 1: pp 267–273 (http://www.rocscience.com/hoek/references/H2002.pdf)

  • Guevara R, Cerda P, Carrero R (2004) Túnel Yacambú-Quibor, Experiencia de Construcción – Reparación Tramo entre las Progresivas 12 + 800 a 12 + 950. XVIII Seminario Venezolano de Geotécnia Geoinfraestructura: “La Geodesia en el Desarrollo Nacional”

  • Hoek E, Brown ET (1997) Practical estimates or rock mass strength. Int J Rock Mech Min 34(8): 1165–1186 (http://www.rocscience.com/hoek/references/H1997.pdf)

  • Hoek E, Marinos P (2000) Predicting tunnel squeezing. Tunnels and Tunnelling International. Part 1 – November 2000, Part 2 – December, 2000. (http://www.rocscience.com/hoek/references/H1998d.pdf)

  • E Hoek P Marinos M Benissi (1998) ArticleTitleApplicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation Bull Engg Geol Env 57 IssueID2 151–160 Occurrence Handle10.1007/s100640050031

    Article  Google Scholar 

  • Hoek E, Carranza-Torres CT, Diederichs MS, Corkum B (2008) Integration of geotechnical and structural design in tunnelling. Proceedings University of Minnesota 56th Annual Geotechnical Engineering Conference. Minneapolis, 29 February 2008, 1–53 (http://www.rocscience.com/hoek/references/H2008.pdf)

  • Kaiser PK, Maloney S, Morgenstern NR (1982) Time-dependent behaviour of tunnels in highly stressed rock. Proc. 5th ISRM Congress of Rock Mechanics. Australia, pp D329–D336

  • Marinos P, Hoek E (2000) GSI – A geologically friendly tool for rock mass strength estimation. Proc. Geo Eng 2000 Conference, Melbourne, pp 1422–1442 (http://www.rocscience.com/hoek/references/H2000a.pdf)

  • Matheson B (2002) Concrete know-how in Venezuela. Tunnels and Tunnelling International, July 2002

  • RV Proctor TL White (1946) Rock tunnelling with steel supports Commercial Shearing and Stamping Co Youngston, Ohio

    Google Scholar 

  • Rabcewicz LV (1964) The New Austrian Tunneling Method, Water Power, Part I, November 1964; Part II, December 1964, pp 511–515; Part III, January 1965, pp 19–24

  • Salcedo DA (1983) Macizos Rocosos: Caracterización, Resistencia al Corte y Mecanismos de Rotura. Proc. 25 Aniversario Conferencia Soc. Venezolana de Mecánica del Suelo e Ingeniería de Fundaciones, Caracas, pp 143–172

  • Sánchez Fernándes JL, Terán Benítez CE (1994) Túnel de Trasvase Yacambú-Quibor. Avance actual de los trabajos de excavación mediante la utilización de soportes flexibles aplicados a rocas con grandes deformaciones. Integral approach to applied rock mechanics. In: van Sint Jan M (ed) Editec, Santiago, Vol. 1, pp 489–497

  • R Trenkamp JN Kellogg JT Freymueller HP Mora (2002) ArticleTitleWide plate margin deformation, Southern Central America and northwestern South America, CASA GPS observations J South Am Earth Sci 15 157–171 Occurrence Handle10.1016/S0895-9811(02)00018-4

    Article  Google Scholar 

  • Vlachopoulos N, Diederichs MS (2009) Improved linear tunnel displacement profiles for convergence confinement analysis. Submitted to Rock Mechanics and Rock Engineering

  • W Wittke (2000) Stability analysis for tunnels Verlag Glückauf GmbH Essen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hoek.

Additional information

Correspondence: E. Hoek, Consulting Engineer, Vancouver, Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoek, E., Guevara, R. Overcoming Squeezing in the Yacambú-Quibor Tunnel, Venezuela. Rock Mech Rock Eng 42, 389–418 (2009). https://doi.org/10.1007/s00603-009-0175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-009-0175-5

Navigation