Skip to main content
Log in

Field Evidence and Kinematical Back-Analysis of Block Rebounds: The Lavone Rockfall, Northern Italy

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper reports the field evidence and the kinematical study of the motion of two blocks (A and B) mobilised by a rockfall in Lavone (Valtrompia, northern Italy) on 14th February 1987. The two sequences of impact marks left by the blocks on the ground surface were measured and the lithostratigraphical features of the debris slope were surveyed. On the basis of the field-collected input data, several computer simulations were carried out to calculate the coefficients of restitution (E) satisfying the trajectory conditions. The computed output values, obtained by running a specific automatic program for rockfall modelling, show that rebound trajectories require high coefficients of restitution (0.8 ≤ E ≤ 0.9). Back-calculated impact velocities range from 9.2 to 19.8 m/s. Trajectory heights vary from 0 to 2.4 m above the slope surface. Block trajectories differ considerably according to the circumstances of initial air projection, i.e. to the initial rebound angle (α r). The calculated values of α r denote a considerable range (36°), emphasising the high variability and the random nature of this parameter. The described case history shows that rockfall computer analyses can be an effective tool to describe the bouncing propagation of single blocks, but care must be taken in choosing the restitution coefficient E and the geometrical parameters of initial air projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

α :

Angle of initial block air projection (°)

α i :

Angle of block impact trajectory compared to slope surface (°)

α r :

Angle of initial block rebound compared to horizontal (°)

α u :

Angle of initial block rebound compared to slope surface (°)

α r*:

Critical angle of initial projection determining maximum rebound length (°)

β :

Slope angle (°)

η :

Normal to slope surface

θ n :

Incidence angle of block impact (°)

θ r :

Reflection angle of block rebound (°)

ω :

Block rotation velocity (m/s)

E :

Coefficient of restitution on impact (−)

E n :

Ratio between the normal components of the rebounding and impacting velocities (−)

E t :

Ratio between the tangential components of the rebounding and impacting velocities (−)

E*:

Limit value of the restitution coefficient for a steady rebound propagation (−)

l :

Block impact mark length (cm)

L :

Block rebound length (m)

R :

Reaction force of slope material to impacting block (kN)

R n :

Normal component of reaction force (kN)

R t :

Tangential component of reaction force (kN)

t 0−n :

Time of block–slope interaction stage (s)

V 0 :

Initial block velocity

V i :

Block impact velocity (m/s)

V r :

Block rebound velocity (m/s)

V xy :

Block translation velocity in the XOY plane (m/s)

z :

Block impact mark depth (cm)

References

  • Antoine P, Camporota P, Giraud A, Rochet L (1987) La menace d’ecroulement aux Ruines de Sechilienne (Isére). Bull Liaison Labo P et Ch 150/151:55–64

    Google Scholar 

  • Aste’ JP, Falcetta JL (1987) Ecroulement de masses rocheusses. Un nouveau modèle probabiliste de prevision de trajectorie—Vers une novelle mèthode d’analyse quantitative de la stabilitè d’une falaise rocheuse. Bureau de Recherches Géologiques et Minières—Service Géologique Regional Rhone-Alpes:1–32

  • Aste’ JP, Cambou B, Falcetta JL (1984) Comportement des masses rocheuses instables. De la prévision a la prévention. In: Proceedings of the 4th Symposium on Landslides, Toronto, Canada, September 1984, vol 1(2), pp 441–446

  • Azimi C, Desvarreaux P, Giraud A, Martin-Cocher J (1982) Méthode de calcul de la dynamique des chutes de blocs: application à l’étude du versant de la montagne de La Pale (Vercors). Bull Liaison Labo P et Ch 122:93–102

    Google Scholar 

  • Azzoni A, de Freitas MH (1995) Experimentally gained parameters, decisive for rock fall analysis. Rock Mech Rock Eng 28(2):111–124

    Article  Google Scholar 

  • Azzoni A, La Barbera G, Zaninetti A (1995) Analysis and prediction of rockfalls using a mathematical model. Int J Rock Mech Min Sci Geomech 32:709–724

    Article  Google Scholar 

  • Bozzolo D, Pamini R (1982) Modello matematico per lo studio della caduta dei massi. Laboratorio di Fisica Terrestre, Dip Pubbl Educazione, Lugano-Trevano, 89 pp

  • Bozzolo D, Pamini R (1986) Simulation of rock falls down a valley side. Acta Mech 63:113–130

    Article  Google Scholar 

  • Bozzolo D, Pamini R, Hutter K (1987) Rockfall analysis—a mathematical model and its test with field data. In: Proceedings of the 6th International Congress on Rock Mechanics, Montreal, Canada, August 1987, vol 2, pp 555-560

  • Broili L (1973) In situ tests for the study of rockfall. Geologia Applicata e Idrogeologia 8(1):105–111

    Google Scholar 

  • Broili L (1977) Relations between scree slope morphometry and dynamics of accumulation processes. In: Rockfall dynamics and protective works effectiveness. Bergamo 20–21/5/1976, ISMES Publication No. 90, pp 11–24

  • Budetta P, Santo A (1994) Morphostructural evolution and related kinematics of rockfalls in Campania (southern Italy): a case study. Eng Geol 36:197–210

    Article  Google Scholar 

  • Camponuovo GF (1977) ISMES experience on the model of S. Martino. In: Rockfall dynamics and protective work effectiveness. Bergamo 20–21/5/1976, ISMES Publication No. 90, pp 25–38

  • Chau KT, Wong RHC, Lee CF (1998) Rockfall problems in Hong Kong and some new experimental results for coefficients of restitution. Int J Rock Mech Min Sci 35(4–5):662–663

    Google Scholar 

  • Chau KT, Wong RHC, Wu JJ (2002) Coefficient of restitution and rotational motions of rockfall impacts. Int J Rock Mech Min Sci 39:69–77

    Article  Google Scholar 

  • Descoeudres F, Zimmermann TH (1987) Three-dimensional dynamic calculation of rockfalls. In: Proceedings of the 6th International Congress on Rock Mechanics, Montreal, Canada, August 1987, vol 1, pp 337–342

  • Evans SG, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  • Falcetta JL (1985) Un nouveau modèle de calcul de trajectoires de blocs rocheux. Revue Francaise de Géotechnique 30:11–17

    Google Scholar 

  • Fornaro M, Peila D, Nebbia M (1990) Block falls on rock slopes—application of a numerical simulation program to some real cases. In: Price DG (ed) Proceedings of the 6th International Congress if the IAEG, Amsterdam, the Netherlands, August 1990. Balkema, Rotterdam, pp 2173–2180

  • Giani GP, Giacomini A, Migliazza M, Segalini A (2004) Experimental and theoretical studies to improve rock fall analysis and protection work design. Rock Mech Rock Eng 37(5):369–389

    Article  Google Scholar 

  • Habib P (1977) Note sur le rebondissement des blocs rocheux. Pubbl ISMES Bergamo, No. 90, pp 123–125

  • Hacar B, Bollo F, Hacar R (1977) Bodies falling down on different slopes. Dynamic study. In: Proceedings of the 9th International Conference on Soil Mechanics and Foundations Engineering, Tokyo, Japan, July 1977, vol 2, pp 91–95

  • Hoek E (1986) Rockfall: a computer program for predicting rockfall trajectories. Unpublished internal notes, Golder Associates, Vancouver

  • Hoek E (1987) A basic microcomputer program for analysis of rockfalls. University of Toronto, Department of Civil Engineering, CIV 1460S, Rock Engineering

  • Hoek E (1990) Rockfall—a program in BASIC for the analysis of rockfalls from the slopes. Unpublished notes, Golder Associates, University of Toronto

  • Hungr O, Evans SG (1988) Engineering evaluation of fragmental rockfall hazards. In: Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, July 1988, pp 685–690

  • Labiouse V, Descoeudres F, Montani S, Schmidhalter CA (1994) Étude expérimentale de la chute de blocs rocheux sur une dalle en béton armé recouverte par des matériaux amortissants. Rev Fr Geotech 69(4):41–62

    Google Scholar 

  • Paronuzzi P (1987a) Modelli di calcolo per l’analisi della propagazione di blocchi rocciosi in frana. Rivista Italiana di Geotecnica 4:145–165

    Google Scholar 

  • Paronuzzi P (1987b) RockFall: un programma basic per la simulazione cinematica dei crolli litoidi. Bollettino della Associazione Mineraria SubAlpina 24(1–2):185–196

    Google Scholar 

  • Paronuzzi P (1989a) Studio geomeccanico dei rimbalzi di blocchi mobilizzati da un crollo litoide: la frana di Lavone (Brescia). Congr Int. di Geoingegneria, Torino, Settembre 1989, vol 2, pp 861–868

  • Paronuzzi P (1989b) Probabilistic approach for design optimization of rockfall protective barriers. Quart J Eng Geol 22:175–183

    Article  Google Scholar 

  • Paronuzzi P, Artini E (1999) Un nuovo programma in ambiente Windows per la modellazione della caduta massi. Geologia Tecnica e Ambientale, Roma 1/99:13–24

    Google Scholar 

  • Paronuzzi P, Coccolo A (1995) Crollo di progetto e affidabilità delle barriere paramassi. Difesa del Suolo GEAM, Giugno–Settembre vol 86, 147–154

  • Paronuzzi P, Blasi L, Cautilli F, Tassoni E (1996) La falesia delle Acque Dolci di Monte Argentario: modellazione cinematica di caduta massi e progettazione delle opere di difesa. Quarry Constr Febbraio 2:79–94

    Google Scholar 

  • Pfeiffer TJ, Bowen TD (1989) Computer simulation of rockfalls. Bull Assoc Eng Geol 26(1):135–146

    Google Scholar 

  • Piteau DR (1977) Computer rockfall model. Rockfall dynamics and protective work effectiveness. Bergamo 20–21/5/1976, ISMES Publication No. 90, pp 127–128

  • Richards LR (1988) Rockfall protection: a review of current analytical and design methods. Secondo ciclo di conferenze di meccanica ed ingegneria delle rocce, MIR, Politecnico di Torino, vol 11, pp 1–13

  • Rochet L (1987) Application des modèles numériques de propagation a l’étude des éboulements rocheux. Bull Liaison Labo P et Ch 150(151):84–95

    Google Scholar 

  • Spang RM, Rautenstrauch RW (1988) Empirical and mathematical approaches to rockfall protection and their practical applications. In: Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, July 1988, pp 1237–1243

  • Wu SS (1985) Rockfall evaluation by computer simulation. Transp Res Rec 1031:1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Paronuzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paronuzzi, P. Field Evidence and Kinematical Back-Analysis of Block Rebounds: The Lavone Rockfall, Northern Italy. Rock Mech Rock Eng 42, 783–813 (2009). https://doi.org/10.1007/s00603-008-0021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-008-0021-1

Keywords

Navigation