Skip to main content

Advertisement

Log in

Dynamic Model of Fracture Normal Behaviour and Application to Prediction of Stress Wave Attenuation Across Fractures

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary.

The purpose of this paper is to establish a dynamic constitutive model of fracture normal behaviour, based on laboratory tests of artificial fractures cast by cement mortar. A series of tests are systematically carried out under quasi-static (10−1 MPa/s) up to highly dynamic (103 MPa/s) monotonic loading conditions. The normal stress-fracture closure response is measured at different loading rates. Based on the measured curves, a nonlinear (hyperbolic) dynamic model of fracture normal behaviour, termed as dynamic BB model, is proposed. The dynamic model is modified from the existing BB model of static normal behaviour of fractures by taking into account the loading-rate effect. Two important dynamic parameters of fractures, FSC d (dynamic fracture stiffness constant, which describes the incremental ratio of dynamic initial stiffness) and FCC d (dynamic fracture closure constant, which describes the decremental ratio of dynamic maximum allowable closure), are identified. They indicate the quantitative degree of loading-rate effect on fracture normal behaviour subjected to dynamic loads. For practical application, the new model is incorporated into the Universal Distinct Element Code (UDEC) and subsequently, UDEC modelling of normally incident P-wave transmission across single fractures with the dynamic BB model is conducted. Wave transmission coefficient is obtained for various combinations of fracture dynamic parameters, as well as different wave amplitudes and frequencies. The numerical results show that wave transmission coefficient for a fracture with the dynamic BB model is greater than that for a fracture with the static BB model. In addition, a fracture with higher values of FSC d and FCC d leads to higher transmission (lower attenuation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. C. Bandis A. C. Lumsden N. R. Barton (1983) ArticleTitleFundamentals of rock fracture deformation Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 20 249–268 Occurrence Handle10.1016/0148-9062(83)90595-8

    Article  Google Scholar 

  • M. Barbero G. Barla A. Zaninetti (1996) ArticleTitleDynamic shear strength of rock joints subjected to impulse loading Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33 141–151 Occurrence Handle10.1016/0148-9062(95)00049-6

    Article  Google Scholar 

  • G. Barla M. Barbero C. Scavia A. Zaninetti (1990) Direct Shear Testing of Single Joints under Dynamic Loading Balkema Rotterdam

    Google Scholar 

  • N. R. Barton S. C. Bandis K. Bakhtar (1985) ArticleTitleStrength, deformation and conductivity coupling of rock joints Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22 121–140 Occurrence Handle10.1016/0148-9062(85)93227-9

    Article  Google Scholar 

  • Brady, B. H., Hsiung, S. H., Chowdhury, A. H., Philip, J. (1990): Verification studies on the UDEC computational model of jointed rock. Mech. Jointed Faulted Rock, 551–558

  • S. R. Brown C. H. Scholz (1985) ArticleTitleClosure of random elastic surfaces in contact J. Geophys. Res. 90 5531–5545 Occurrence Handle10.1029/JB090iB07p05531

    Article  Google Scholar 

  • S. R. Brown C. H. Scholz (1986) ArticleTitleClosure of rock joints J. Geophys. Res. 91 4939–4948 Occurrence Handle10.1029/JB091iB05p04939

    Article  Google Scholar 

  • J. G. Cai J. Zhao (2000) ArticleTitleEffects of multiple parallel fractures on apparent wave attenuation in rock masses Int. J. Rock Mech. Min. Sci. 37 661–682 Occurrence Handle10.1016/S1365-1609(00)00013-7

    Article  Google Scholar 

  • Cundall, P. A. (1971) A computer model for simulating progressive large scale movements in blocky rock systems. In: Proc. Sym. ISRM, Vol. 1, Nancy, France [Paper II-8]

  • Cundall, P. A., Hart, R. (1985): Development of generalized 2-D and 3-D distinct element programs for modelling jointed rock. Itasca Consulting Group Misc. Paper SL-85-1, U.S. Army Corps of Engineers, Vicksburg

  • J. H. Dieterich (1972) ArticleTitleTime-dependent friction in rocks J. Geophys. Res. 77 3690–3697 Occurrence Handle10.1029/JB077i020p03690

    Article  Google Scholar 

  • Goodman, R. E. (1976): Methods of Geological Engineering in Discontinuous Rocks, 1st edition. West New York

  • J. C. Gu J. R. Rice A. L. Ruina S. T. Tse (1984) ArticleTitleSlip motion and stability of a single degree of freedom elastic system with rate and state dependent friction J. Mech. Physics Solids 32 167–196 Occurrence Handle10.1016/0022-5096(84)90007-3

    Article  Google Scholar 

  • R. D. Hart C. M. S. John (1986) ArticleTitleFormulation of a fully-coupled thermal-mechanical-fluid flow model for non-linear geologic systems Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 23 213–224 Occurrence Handle10.1016/0148-9062(86)90967-8

    Article  Google Scholar 

  • Hobbs, B. E., Ord, A., Marone, C. (1990): Dynamic behaviour of rock joints. In: Proc. Int. Sym. Rock Joints, Balkeman, Rotterdam, 435–445

  • Hopkins, D. L., Cook, N. G. W., Myer, L. R. (1987): Fracture stiffness and aperture as a function of applied stress and contact geometry. In: Proc. 28th US Sym. Rock Mech. Tucson 673–680

  • Hopkins, D. L., Cook, N. G. W., Myer, L. R. (1990): Normal joint stiffness as a function of spatial geometry and surface roughness. In: Proc. Int. Sym. Rock Joints, Rotterdam: Balkema 203–211

  • International Society for Rock Mechanics, Committee on Testing Methods Rock Characterization, Testing and Monitoring: ISRM Suggested Methods (edited by Brown ET) 1981, Pergamon Press, Oxford

  • InstitutionalAuthorNameItasca (1996) UDEC user’s manual Itasca Consulting Group Inc. Minneapolis

    Google Scholar 

  • Jing, L. (1990): Numerical modelling of jointed rock masses by Distinct Element Methods for two and three-dimensional problems, Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden

  • L. Jing (2003) ArticleTitleA review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering Int. J. Rock Mech. Min. Sci. 40 283–353 Occurrence Handle10.1016/S1365-1609(03)00013-3

    Article  Google Scholar 

  • L. Jing O. Stephansson E. Nordlund (1993) ArticleTitleStudy of rock joints under cyclic loading conditions Rock Mech. Rock Engng. 25 215–232 Occurrence Handle10.1007/BF01040116

    Article  Google Scholar 

  • R. L. Kuhlmeyer J. Lysmer (1973) ArticleTitleFinite element method accuracy for wave propagation problems J. Soil Mech. Found. Div., ASCE 99 421–427

    Google Scholar 

  • F. H. Kulhaway (1975) ArticleTitleStress-deformation properties of rock and rock discontinuities Engng. Geol 8 327–350 Occurrence Handle10.1016/0013-7952(75)90014-9

    Article  Google Scholar 

  • Lemos, J. V. (1987): A distinct element model for dynamic analysis of jointed rock with application to dam foundation and fault motion. Ph.D. Thesis, University of Minnesota, Minneapolis, USA

  • L. J. Lorig B. H. G. Brady P. A. Cundall (1986) ArticleTitleHybrid distinct element-boundary element analysis of jointed rock Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 23 303–312 Occurrence Handle10.1016/0148-9062(86)90642-X

    Article  Google Scholar 

  • J. R. Rice (1983) ArticleTitleConstitutive relations for fault slip and earthquake instabilities Pure Applied Geophys. 22 329–332

    Google Scholar 

  • A. L. Ruina (1983) ArticleTitleSlip instability and state variable friction laws J. Geophys. Res. 88 10259–10270 Occurrence Handle10.1029/JB088iB12p10359

    Article  Google Scholar 

  • Swan, G. (1981) Tribology and the characterisation of rock joints. In: Proc. 22nd US Symp. Rock Mech. Massachusetts Institute of Technology, Cambridge 402–407

  • J. Zhao (1997) ArticleTitleJoint surface matching and joint shear strength. Part A: joint matching coefficient (JMC) Int. J. Rock Mech. Min. Sci. 34 173–178 Occurrence Handle10.1016/S0148-9062(96)00062-9

    Article  Google Scholar 

  • J. Zhao (1997) ArticleTitleJoint surface matching and joint shear strength. Part B: JRC-JMC shear strength criterion Int. J. Rock Mech. Min. Sci. 34 179–185 Occurrence Handle10.1016/S0148-9062(96)00063-0

    Article  Google Scholar 

  • J. Zhao (2000) ArticleTitleApplicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock Int. J. Rock Mech. Min. Sci. 37 1115–1121 Occurrence Handle10.1016/S1365-1609(00)00049-6

    Article  Google Scholar 

  • J. Zhao J. G. Cai (2001) ArticleTitleTransmission of elastic P-waves across single fracture with a nonlinear normal deformational behaviour Rock Mech. Rock Engng. 34 3–22 Occurrence Handle10.1007/s006030170023

    Article  Google Scholar 

  • J. Zhao H. B. Li M. B. Wu T. J. Li (1999) ArticleTitleDynamic uniaxial compression tests on a granite Int. J. Rock Mech. Min. Sci. 36 273–277 Occurrence Handle10.1016/S0148-9062(99)00008-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author’s address: J. Zhao, Ecole Polytechnique Federale de Lausanne (EPFL), Rock Mechanics Laboratory, 1015 Lausanne, Switzerland

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Cai, J., Zhao, X. et al. Dynamic Model of Fracture Normal Behaviour and Application to Prediction of Stress Wave Attenuation Across Fractures. Rock Mech Rock Eng 41, 671–693 (2008). https://doi.org/10.1007/s00603-006-0127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-006-0127-2

Navigation