Skip to main content
Log in

Transformation Coefficients of Hyperspherical Harmonic Functions of an -Body System

Few-Body Systems Aims and scope Submit manuscript

Abstract.

Two algorithms are presented for calculating the transformation coefficients between hyperspherical harmonic functions constructed with different sets of Jacobi vectors. They have been tested in the case , where the transformation coefficients of states with grand angular quantum number up to have been studied. The applicability of the two algorithms to larger systems is discussed. The numbers of independent hyperspherical-spin-isospin states with given values, entering the expansion of the alpha-particle ground-state wave function, are also evaluated. The use of complete non-redundant bases is important for future accurate applications of the hyperspherical harmonic technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Additional information

Received December 23, 1997; revised May 25, 1998; accepted for publication May 30, 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viviani, M. Transformation Coefficients of Hyperspherical Harmonic Functions of an -Body System. Few-Body Systems 25, 177–187 (1998). https://doi.org/10.1007/s006010050101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s006010050101

Navigation