Abstract
In this work, we present a study on the role of atomic configurations in forming van der Waals molecules through three-body recombination. Fixing the angle between the two momenta associated with the Jacobi vectors, we calculate the reaction probability for a specific configuration. In this way, we elucidate the nature of the total reaction probability in reactions X + He + He\(\rightarrow \)XHe + He, essential for understanding van der Waals molecules formation in molecular beams and buffer gas cells.
Similar content being viewed by others
Data Availibility
No datasets were generated or analysed during the current study.
References
M. Mirahmadi, J. Pérez-Ríos, Three-body recombination in physical chemistry. Int. Rev. Phys. Chem. 41(3–4), 233–267 (2022). https://doi.org/10.1080/0144235X.2023.2237300
J. Glick, W. Huntington, D. Heinzen, Cold Beam of \(^7\)Li\(^4\)He Dimers (2024). https://arxiv.org/abs/2402.16209
N. Brahms, T.V. Tscherbul, P. Zhang, J. Kłos, H.R. Sadeghpour, A. Dalgarno, J.M. Doyle, T.G. Walker, Formation of van der Waals molecules in buffer-gas-cooled magnetic traps. Phys. Rev. Lett. 105, 033001 (2010). https://doi.org/10.1103/PhysRevLett.105.033001
N. Brahms, T.V. Tscherbul, P. Zhang, J. Kłos, R.C. Forrey, Y.S. Au, H.R. Sadeghpour, A. Dalgarno, J.M. Doyle, T.G. Walker, Formation and dynamics of van der Waals molecules in buffer-gas traps. Phys. Chem. Chem. Phys. 13, 19125–19141 (2011). https://doi.org/10.1039/C1CP21317B
N. Tariq, N.A. Taisan, V. Singh, J.D. Weinstein, Spectroscopic detection of the LiHe molecule. Phys. Rev. Lett. 110, 153201 (2013). https://doi.org/10.1103/PhysRevLett.110.153201
N. Quiros, N. Tariq, T.V. Tscherbul, J. Kłos, J.D. Weinstein, Cold anisotropically interacting van der Waals molecule: TiHe. Phys. Rev. Lett. 118, 213401 (2017). https://doi.org/10.1103/PhysRevLett.118.213401
J. Koperski, Study of diatomic van der Waals complexes in supersonic beams. Phys. Rep. 369(3), 177–326 (2002). https://doi.org/10.1016/S0370-1573(02)00200-4
A.D. Buckingham, P.W. Fowler, J.M. Hutson, Theoretical studies of van der Waals molecules and intermolecular forces. Chem. Rev. 88(6), 963–988 (1988). https://doi.org/10.1021/cr00088a008
B.L. Blaney, G.E. Ewing, Van der Waals molecules. Ann. Rev. Phys. Chem. 27 27, 553–584 (1976). https://doi.org/10.1146/annurev.pc.27.100176.003005
R.A. Aziz, A.R. Janzen, M.R. Moldover, Ab initio calculations for helium: a standard for transport property measurements. Phys. Rev. Lett. 74(9), 1586–1589 (1995). https://doi.org/10.1103/PhysRevLett.74.1586
J.C. Brice, Condensation and evaporation: J.p. hirth and g.m. pound: Pergamon press, oxford, 1963. pp. xvi + 190. 50s. Solid-state Electronics 7, 489 (1964)
W.J. Dunning, Nucleation; homogeneous and heterogeneous. Nucleation processes and aerosol formation. Discuss. Faraday Soc. 30, 9–19 (1960). https://doi.org/10.1039/DF9603000009
N. Brahms, B. Newman, C. Johnson, T. Greytak, D. Kleppner, J. Doyle, Magnetic trapping of silver and copper, and anomalous spin relaxation in the Ag-He system. Phys. Rev. Lett. 101, 103002 (2008). https://doi.org/10.1103/PhysRevLett.101.103002
H. Suno, B.D. Esry, Three-body recombination in cold helium-helium-alkali-metal-atom collisions. Phys. Rev. A 80, 062702 (2009). https://doi.org/10.1103/PhysRevA.80.062702
H. Suno, Cold three-body recombination in helium-helium-silver-atom collisions using the hybrid slow-variable-discretization-adiabatic hyperspherical \(r\)-matrix approach. Phys. Rev. A 109, 042814 (2024). https://doi.org/10.1103/PhysRevA.109.042814
B.-B. Wang, M. Zhang, Y.-C. Han, Ultracold state-to-state chemistry for three-body recombination in realistic 3He2-alkaline-earth-metal systems. J. Chem. Phys. 157(1), 014305 (2022). https://doi.org/10.1063/5.0090243
B.-B. Wang, S.-H. Jing, Y.-C. Han, Product-state distributions of three-body recombination in zero-collision-energy 4he2-alkaline-earth-metal systems. J. Phys. Chem. A 127(42), 8862–8870 (2023). https://doi.org/10.1021/acs.jpca.3c04846
M.-M. Zhao, B.-B. Wang, G.-R. Wang, B. Fu, M. Shundalau, Y.-C. Han, Full-dimensional quantum mechanical study of three-body recombination for cold 4He-4He-20Ne system. J. Chem. Phys. 158(13), 134302 (2023). https://doi.org/10.1063/5.0144619
J. Pérez-Ríos, S. Ragole, J. Wang, C.H. Greene, Comparison of classical and quantal calculations of helium three-body recombination. J. Chem. Phys. 140(4), 044307 (2014). https://doi.org/10.1063/1.4861851
J. Pérez-Ríos, An introduction to cold and ultracold chemistry (Springer, Cham, 2020)
M. Mirahmadi, J. Pérez-Ríos, On the formation of van der Waals complexes through three-body recombination. J. Chem. Phys. 154(3), 034305 (2021). https://doi.org/10.1063/5.0039610
M. Mirahmadi, J. Pérez-Ríos, Classical threshold law for the formation of van der Waals molecules. J. Chem. Phys. 155(9), 094306 (2021). https://doi.org/10.1063/5.0062812
C.H. Greene, P. Giannakeas, J. Pérez-Ríos, Universal few-body physics and cluster formation. Rev. Mod. Phys. 89, 035006 (2017). https://doi.org/10.1103/RevModPhys.89.035006
R. Koots, Y. Wang, M. Mirahmadi, J. Pérez-Ríos, Py3br: a software for computing atomic three-body recombination rates. J. Comput. Chem. 45(17), 1505–1514 (2024). https://doi.org/10.1002/jcc.27341
C.D. Lin, Hyperspherical coordinate approach to atomic and other coulombic three-body systems. Phys. Rep. 257(1), 1–83 (1995)
J.S. Avery, Hyperspherical harmonics: applications in quantum theory (Springer, Dordrecht, 2012)
K.K. Fang, Three-body to three-body elastic scattering using hyperspherical harmonics. Phys. Rev. C 15, 1204–1214 (1977). https://doi.org/10.1103/PhysRevC.15.1204
Y. Wang, M. Mirahmadi, J. Pérez-Ríos, On the role of non-additive interactions in three-body recombination. Phys. Chem. Chem. Phys. 26, 7264–7268 (2024). https://doi.org/10.1039/D3CP05087D
H. Partridge, J. R. Stallcop, E. Levin, Potential energy curves and transport properties for the interaction of He with other ground-state atoms. J. Chem. Phys. 115(14), 6471–6488. https://doi.org/10.1063/1.1385372
M. Mirahmadi, J. Pérez-Ríos, Ion-atom-atom three-body recombination: from the cold to the thermal regime. J. Chem. Phys. 158(2), 024103 (2023). https://doi.org/10.1063/5.0134132
Acknowledgements
The authors acknowledge the support of the Simons Foundation and the United States Air Force Office of Scientific Research [Grant Number FA9550-23-1-0202]. The authors want to thank Alejandro Kievsky, Tobias Frederico, Otto-Uldall Fynbo, and Jean-Marc Richard for organizing Critical Stability 2023.
Author information
Authors and Affiliations
Contributions
J. P.-R. wrote the manuscript and led the project. Y. W. did the calculations and the figures. Both authors check the manuscript and make changes to it.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, Y., Pérez-Ríos, J. Stereodynamics Effects on van der Waals Molecule Formation Through Three-Body Recombination. Few-Body Syst 65, 83 (2024). https://doi.org/10.1007/s00601-024-01953-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00601-024-01953-x