Skip to main content
Log in

Stereodynamics Effects on van der Waals Molecule Formation Through Three-Body Recombination

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this work, we present a study on the role of atomic configurations in forming van der Waals molecules through three-body recombination. Fixing the angle between the two momenta associated with the Jacobi vectors, we calculate the reaction probability for a specific configuration. In this way, we elucidate the nature of the total reaction probability in reactions X + He + He\(\rightarrow \)XHe + He, essential for understanding van der Waals molecules formation in molecular beams and buffer gas cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility

No datasets were generated or analysed during the current study.

References

  1. M. Mirahmadi, J. Pérez-Ríos, Three-body recombination in physical chemistry. Int. Rev. Phys. Chem. 41(3–4), 233–267 (2022). https://doi.org/10.1080/0144235X.2023.2237300

    Article  Google Scholar 

  2. J. Glick, W. Huntington, D. Heinzen, Cold Beam of \(^7\)Li\(^4\)He Dimers (2024). https://arxiv.org/abs/2402.16209

  3. N. Brahms, T.V. Tscherbul, P. Zhang, J. Kłos, H.R. Sadeghpour, A. Dalgarno, J.M. Doyle, T.G. Walker, Formation of van der Waals molecules in buffer-gas-cooled magnetic traps. Phys. Rev. Lett. 105, 033001 (2010). https://doi.org/10.1103/PhysRevLett.105.033001

    Article  ADS  Google Scholar 

  4. N. Brahms, T.V. Tscherbul, P. Zhang, J. Kłos, R.C. Forrey, Y.S. Au, H.R. Sadeghpour, A. Dalgarno, J.M. Doyle, T.G. Walker, Formation and dynamics of van der Waals molecules in buffer-gas traps. Phys. Chem. Chem. Phys. 13, 19125–19141 (2011). https://doi.org/10.1039/C1CP21317B

    Article  Google Scholar 

  5. N. Tariq, N.A. Taisan, V. Singh, J.D. Weinstein, Spectroscopic detection of the LiHe molecule. Phys. Rev. Lett. 110, 153201 (2013). https://doi.org/10.1103/PhysRevLett.110.153201

    Article  ADS  Google Scholar 

  6. N. Quiros, N. Tariq, T.V. Tscherbul, J. Kłos, J.D. Weinstein, Cold anisotropically interacting van der Waals molecule: TiHe. Phys. Rev. Lett. 118, 213401 (2017). https://doi.org/10.1103/PhysRevLett.118.213401

    Article  ADS  Google Scholar 

  7. J. Koperski, Study of diatomic van der Waals complexes in supersonic beams. Phys. Rep. 369(3), 177–326 (2002). https://doi.org/10.1016/S0370-1573(02)00200-4

    Article  ADS  Google Scholar 

  8. A.D. Buckingham, P.W. Fowler, J.M. Hutson, Theoretical studies of van der Waals molecules and intermolecular forces. Chem. Rev. 88(6), 963–988 (1988). https://doi.org/10.1021/cr00088a008

    Article  Google Scholar 

  9. B.L. Blaney, G.E. Ewing, Van der Waals molecules. Ann. Rev. Phys. Chem. 27 27, 553–584 (1976). https://doi.org/10.1146/annurev.pc.27.100176.003005

    Article  Google Scholar 

  10. R.A. Aziz, A.R. Janzen, M.R. Moldover, Ab initio calculations for helium: a standard for transport property measurements. Phys. Rev. Lett. 74(9), 1586–1589 (1995). https://doi.org/10.1103/PhysRevLett.74.1586

    Article  ADS  Google Scholar 

  11. J.C. Brice, Condensation and evaporation: J.p. hirth and g.m. pound: Pergamon press, oxford, 1963. pp. xvi + 190. 50s. Solid-state Electronics 7, 489 (1964)

  12. W.J. Dunning, Nucleation; homogeneous and heterogeneous. Nucleation processes and aerosol formation. Discuss. Faraday Soc. 30, 9–19 (1960). https://doi.org/10.1039/DF9603000009

    Article  Google Scholar 

  13. N. Brahms, B. Newman, C. Johnson, T. Greytak, D. Kleppner, J. Doyle, Magnetic trapping of silver and copper, and anomalous spin relaxation in the Ag-He system. Phys. Rev. Lett. 101, 103002 (2008). https://doi.org/10.1103/PhysRevLett.101.103002

    Article  ADS  Google Scholar 

  14. H. Suno, B.D. Esry, Three-body recombination in cold helium-helium-alkali-metal-atom collisions. Phys. Rev. A 80, 062702 (2009). https://doi.org/10.1103/PhysRevA.80.062702

    Article  ADS  Google Scholar 

  15. H. Suno, Cold three-body recombination in helium-helium-silver-atom collisions using the hybrid slow-variable-discretization-adiabatic hyperspherical \(r\)-matrix approach. Phys. Rev. A 109, 042814 (2024). https://doi.org/10.1103/PhysRevA.109.042814

    Article  ADS  Google Scholar 

  16. B.-B. Wang, M. Zhang, Y.-C. Han, Ultracold state-to-state chemistry for three-body recombination in realistic 3He2-alkaline-earth-metal systems. J. Chem. Phys. 157(1), 014305 (2022). https://doi.org/10.1063/5.0090243

    Article  ADS  Google Scholar 

  17. B.-B. Wang, S.-H. Jing, Y.-C. Han, Product-state distributions of three-body recombination in zero-collision-energy 4he2-alkaline-earth-metal systems. J. Phys. Chem. A 127(42), 8862–8870 (2023). https://doi.org/10.1021/acs.jpca.3c04846

    Article  Google Scholar 

  18. M.-M. Zhao, B.-B. Wang, G.-R. Wang, B. Fu, M. Shundalau, Y.-C. Han, Full-dimensional quantum mechanical study of three-body recombination for cold 4He-4He-20Ne system. J. Chem. Phys. 158(13), 134302 (2023). https://doi.org/10.1063/5.0144619

    Article  ADS  Google Scholar 

  19. J. Pérez-Ríos, S. Ragole, J. Wang, C.H. Greene, Comparison of classical and quantal calculations of helium three-body recombination. J. Chem. Phys. 140(4), 044307 (2014). https://doi.org/10.1063/1.4861851

    Article  ADS  Google Scholar 

  20. J. Pérez-Ríos, An introduction to cold and ultracold chemistry (Springer, Cham, 2020)

    Book  Google Scholar 

  21. M. Mirahmadi, J. Pérez-Ríos, On the formation of van der Waals complexes through three-body recombination. J. Chem. Phys. 154(3), 034305 (2021). https://doi.org/10.1063/5.0039610

    Article  ADS  Google Scholar 

  22. M. Mirahmadi, J. Pérez-Ríos, Classical threshold law for the formation of van der Waals molecules. J. Chem. Phys. 155(9), 094306 (2021). https://doi.org/10.1063/5.0062812

    Article  ADS  Google Scholar 

  23. C.H. Greene, P. Giannakeas, J. Pérez-Ríos, Universal few-body physics and cluster formation. Rev. Mod. Phys. 89, 035006 (2017). https://doi.org/10.1103/RevModPhys.89.035006

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Koots, Y. Wang, M. Mirahmadi, J. Pérez-Ríos, Py3br: a software for computing atomic three-body recombination rates. J. Comput. Chem. 45(17), 1505–1514 (2024). https://doi.org/10.1002/jcc.27341

    Article  Google Scholar 

  25. C.D. Lin, Hyperspherical coordinate approach to atomic and other coulombic three-body systems. Phys. Rep. 257(1), 1–83 (1995)

    Article  ADS  Google Scholar 

  26. J.S. Avery, Hyperspherical harmonics: applications in quantum theory (Springer, Dordrecht, 2012)

    Google Scholar 

  27. K.K. Fang, Three-body to three-body elastic scattering using hyperspherical harmonics. Phys. Rev. C 15, 1204–1214 (1977). https://doi.org/10.1103/PhysRevC.15.1204

    Article  ADS  Google Scholar 

  28. Y. Wang, M. Mirahmadi, J. Pérez-Ríos, On the role of non-additive interactions in three-body recombination. Phys. Chem. Chem. Phys. 26, 7264–7268 (2024). https://doi.org/10.1039/D3CP05087D

    Article  Google Scholar 

  29. H. Partridge, J. R. Stallcop, E. Levin, Potential energy curves and transport properties for the interaction of He with other ground-state atoms. J. Chem. Phys. 115(14), 6471–6488. https://doi.org/10.1063/1.1385372

  30. M. Mirahmadi, J. Pérez-Ríos, Ion-atom-atom three-body recombination: from the cold to the thermal regime. J. Chem. Phys. 158(2), 024103 (2023). https://doi.org/10.1063/5.0134132

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Simons Foundation and the United States Air Force Office of Scientific Research [Grant Number FA9550-23-1-0202]. The authors want to thank Alejandro Kievsky, Tobias Frederico, Otto-Uldall Fynbo, and Jean-Marc Richard for organizing Critical Stability 2023.

Author information

Authors and Affiliations

Authors

Contributions

J. P.-R. wrote the manuscript and led the project. Y. W. did the calculations and the figures. Both authors check the manuscript and make changes to it.

Corresponding author

Correspondence to Jesús Pérez-Ríos.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Pérez-Ríos, J. Stereodynamics Effects on van der Waals Molecule Formation Through Three-Body Recombination. Few-Body Syst 65, 83 (2024). https://doi.org/10.1007/s00601-024-01953-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01953-x

Navigation