Skip to main content
Log in

Exploring Pulsar Glitches with Dipolar Supersolids

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Glitches are sudden spin-up events that interrupt the gradual spin-down of rotating neutron stars. They are believed to arise from the rapid unpinning of vortices in the neutron star inner crust. The analogy between the inner crust of neutron stars and dipolar supersolids allows to investigate glitches. Employing such analogy, we numerically analyze the vortex trapping mechanism and how the matter density distribution influences glitches. These results pave the way for the quantum simulation of celestial bodies in laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. E. Poli, T. Bland, S.J.M. White, M.J. Mark, F. Ferlaino, S. Trabucco, M. Mannarelli, Glitches in rotating supersolids. Phys. Rev. Lett. 131(22), 223401 (2023). https://doi.org/10.1103/PhysRevLett.131.223401. arXiv:2306.09698 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  2. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)

    Book  Google Scholar 

  3. N.K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Springer, New York, 2000)

    Book  Google Scholar 

  4. P. Haensel, B. Pichon, Experimental nuclear masses and the ground state of cold dense matter. Astron. Astrophys. 283(1), 313–318 (1994). https://doi.org/10.48550/arXiv.nucl-th/9310003. arXiv:nucl-th/9310003 [nucl-th]

    Article  ADS  Google Scholar 

  5. J.M. Lattimer, M. Prakash, Neutron star structure and the equation of state. Astrophys. J. 550, 426 (2001). https://doi.org/10.1086/319702. arXiv:astro-ph/0002232 [astro-ph]

    Article  ADS  Google Scholar 

  6. F. Douchin, P. Haensel, A unified equation of state of dense matter and neutron star structure. Astron. Astrophys. 380, 151 (2001). https://doi.org/10.1051/0004-6361:20011402. arXiv:astro-ph/0111092 [astro-ph]

    Article  ADS  Google Scholar 

  7. P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1: Equation of State and Structure vol. 326 (Springer, New York, 2007). https://doi.org/10.1007/978-0-387-47301-7

  8. A.Y. Potekhin, A.F. Fantina, N. Chamel, J.M. Pearson, S. Goriely, Analytical representations of unified equations of state for neutron-star matter. Astron. Astrophys. 560, 48 (2013). https://doi.org/10.1051/0004-6361/201321697. arXiv:1310.0049 [astro-ph.SR]

    Article  ADS  Google Scholar 

  9. B.K. Sharma, M. Centelles, X. Viñas, M. Baldo, G.F. Burgio, Unified equation of state for neutron stars on a microscopic basis. Astron. Astrophys. 584, 103 (2015). https://doi.org/10.1051/0004-6361/201526642. arXiv:1506.00375 [nucl-th]

    Article  ADS  Google Scholar 

  10. B.K. Sharma, M. Centelles, X. Viñas, M. Baldo, G.F. Burgio, Unified equation of state for neutron stars on a microscopic basis. Astron. Astrophys. 584, 103 (2015). https://doi.org/10.1051/0004-6361/201526642. arXiv:1506.00375 [nucl-th]

    Article  ADS  Google Scholar 

  11. G. Fiorella Burgio, A.F. Fantina, Nuclear equation of state for compact stars and supernovae. Astrophys. Space Sci. Libr. 457, 255–335 (2018). https://doi.org/10.1007/978-3-319-97616-7_6. arXiv:1804.03020 [nucl-th]

    Article  ADS  Google Scholar 

  12. J.W. Negele, D. Vautherin, Neutron star matter at subnuclear densities. Nucl. Phys. A 207, 298–320 (1973). https://doi.org/10.1016/0375-9474(73)90349-7

    Article  ADS  Google Scholar 

  13. A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins, Observation of a rapidly pulsating radio source. Nature 217(5130), 709–713 (1968). https://doi.org/10.1038/217709a0

    Article  ADS  Google Scholar 

  14. O. Hamil, J.R. Stone, M. Urbanec, G. Urbancová, Braking index of isolated pulsars. Phys. Rev. D 91(6), 063007 (2015). https://doi.org/10.1103/PhysRevD.91.063007. arXiv:1608.01383 [astro-ph.HE]

    Article  ADS  Google Scholar 

  15. V.M. Kaspi, M. Kramer, Radio pulsars: the neutron star population & fundamental physics, in 26th Solvay Conference on Physics: Astrophysics and Cosmology (2016)

  16. S. Zhou, E. Gügercinoğlu, J. Yuan, M. Ge, C. Yu, Pulsar glitches: a review. Universe 8(12), 641 (2022). https://doi.org/10.3390/universe8120641

    Article  ADS  Google Scholar 

  17. G. Baym, C. Pethick, D. Pines, M. Ruderman, Spin up in neutron stars: the future of the vela pulsar. Nature 224, 872 (1969). https://doi.org/10.1038/224872a0

    Article  ADS  Google Scholar 

  18. M. Ruderman, Pulsars: structure and dynamics. Ann. Rev. Astron. Astrophys. 10, 427–476 (1972). https://doi.org/10.1146/annurev.aa.10.090172.002235

    Article  ADS  Google Scholar 

  19. D. Pines, in Ventura, J., Pines, D. (eds.) Neutron Stars as Cosmic Hadron Physics Laboratories: What Glitches Teach Us, (Springer, Dordrecht, 1991), pp. 57–70 https://doi.org/10.1007/978-94-011-3536-8_5

  20. B. Link, R.I. Epstein, J.M. Lattimer, Pulsar constraints on neutron star structure and equation of state. Phys. Rev. Lett. 83, 3362–3365 (1999). https://doi.org/10.1103/PhysRevLett.83.3362. arXiv:astro-ph/9909146

    Article  ADS  Google Scholar 

  21. B. Haskell, A. Melatos, Models of Pulsar Glitches. Int. J. Mod. Phys. D 24(03), 1530008 (2015). https://doi.org/10.1142/S0218271815300086. arXiv:1502.07062 [astro-ph.SR]

    Article  ADS  MathSciNet  Google Scholar 

  22. P.W. Anderson, N. Itoh, Pulsar glitches and restlessness as a hard superfluidity phenomenon. Nature 256, 25–27 (1975). https://doi.org/10.1038/256025a0

    Article  ADS  Google Scholar 

  23. M.A. Alpar, Pinning and Threading of Quantized Vortices in the Pulsar Crust Superfluid. Astrophys. J. 213, 527–530 (1977). https://doi.org/10.1086/155183

    Article  ADS  Google Scholar 

  24. M.A. Alpar, D. Pines, P.W. Anderson, J. Shaham, Vortex creep and the internal temperature of neutron stars. I General Theory. Astrophys. J. 276, 325–334 (1984). https://doi.org/10.1086/161616

    Article  ADS  Google Scholar 

  25. M.A. Alpar, P.W. Anderson, D. Pines, J. Shaham, Vortex creep and the internal temperature of neutron stars. II VELA Pulsar. Astrophys. J. 278, 791–805 (1984). https://doi.org/10.1086/161849

    Article  ADS  Google Scholar 

  26. B. Link, R.I. Epstein, K.A. Van Riper, Pulsar glitches as probes of neutron star interiors. Nature 359(6396), 616–618 (1992). https://doi.org/10.1038/359616a0

    Article  ADS  Google Scholar 

  27. E. Altman et al., Quantum simulators: architectures and opportunities. PRX Quantum 2(1), 017003 (2021). https://doi.org/10.1103/PRXQuantum.2.017003. arXiv:1912.06938 [quant-ph]

    Article  MathSciNet  Google Scholar 

  28. D. Tsakadze, S.D. Tsakadze et al., Measurement of the relaxation time on acceleration of vessels with helium II and superfluidity in pulsars. Soviet Phys. JETP 37, 918–921 (1973)

    ADS  Google Scholar 

  29. J.S. Tsakadze, S.J. Tsakadze, Properties of slowly rotating helium II and the superfluidity of pulsars. J. Low Temp. Phys. 39, 649 (1980). https://doi.org/10.1007/BF00114899

    Article  ADS  Google Scholar 

  30. L. Warszawski, A. Melatos, Gross-Pitaevskii model of pulsar glitches. Mon. Not. Roy. Astron. Soc. 415, 1611 (2011). https://doi.org/10.1111/j.1365-2966.2011.18803.x. arXiv:1103.6090 [astro-ph.SR]

    Article  ADS  Google Scholar 

  31. L. Warszawski, A. Melatos, N. Berloff, Unpinning triggers for superfluid vortex avalanches. Phys. Rev. B 85, 104503 (2012). https://doi.org/10.1103/PhysRevB.85.104503. arXiv:1203.5133 [cond-mat.other]

    Article  ADS  Google Scholar 

  32. L. Warszawski, A. Melatos, Knock-on processes in superfluid vortex avalanches and pulsar glitch statistics. Mon. Not. Roy. Astron. Soc. 428, 1911 (2013). https://doi.org/10.1093/mnras/sts108. arXiv:1210.2203 [astro-ph.HE]

    Article  ADS  Google Scholar 

  33. V. Graber, N. Andersson, M. Hogg, Neutron stars in the laboratory. Int. J. Mod. Phys. D 26(08), 1730015 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. J. You, S. Yi, Y. Deng, Self-Ordered Supersolid in Spinor Condensates with Cavity-Mediated Spin-Momentum-Mixing Interactions (2024) arXiv:2404.11157 [cond-mat.quant-gas]

  35. A. Alaña, M. Modugno, P. Capuzzi, D.M. Jezek, Phase-Induced Vortex Pinning in Rotating Supersolid Dipolar Systems (2024) arXiv:2405.05099 [cond-mat.quant-gas]

  36. P. Magierski, A. Barresi, A. Makowski, D. Pecak, G. Wlazłowski, Quantum Vortices in Fermionic Superfluids: From Ultracold Atoms to Neutron Stars (2024) arXiv:2406.14158 [cond-mat.quant-gas]

  37. S. Shukla, M. E. Brachet, R. Pandit, Neutron-superfluid vortices and proton-superconductor flux tubes: Development of a minimal model for pulsar glitches (2024) arXiv:2405.12127

  38. A.J. Leggett, Can a solid be “superfluid’’? Phys. Rev. Lett. 25, 1543–1546 (1970). https://doi.org/10.1103/PhysRevLett.25.1543

    Article  ADS  Google Scholar 

  39. J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F.Ç. Top, A.O. Jamison, W. Ketterle, A stripe phase with supersolid properties in spin-orbit-coupled Bose–Einstein condensates. Nature 543(7643), 91–94 (2017)

    Article  ADS  Google Scholar 

  40. J. Léonard, A. Morales, P. Zupancic, T. Esslinger, T. Donner, Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543(7643), 87–90 (2017)

    Article  ADS  Google Scholar 

  41. F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, T. Pfau, Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019). https://doi.org/10.1103/PhysRevX.9.011051

    Article  Google Scholar 

  42. L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabbanini, R.N. Bisset, L. Santos, G. Modugno, Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019). https://doi.org/10.1103/PhysRevLett.122.130405

    Article  ADS  Google Scholar 

  43. L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R.M.W. Bijnen, A. Patscheider, M. Sohmen, M.J. Mark, F. Ferlaino, Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019). https://doi.org/10.1103/PhysRevX.9.021012

    Article  Google Scholar 

  44. M.A. Norcia, C. Politi, L. Klaus, E. Poli, M. Sohmen, M.J. Mark, R.N. Bisset, L. Santos, F. Ferlaino, Two-dimensional supersolidity in a dipolar quantum gas. Nature 596(7872), 357–361 (2021)

    Article  ADS  Google Scholar 

  45. T. Bland, E. Poli, C. Politi, L. Klaus, M. Norcia, F. Ferlaino, L. Santos, R. Bisset, Two-dimensional supersolid formation in dipolar condensates. Phys. Rev. Lett. 128(19), 195302 (2022)

    Article  ADS  Google Scholar 

  46. L. Klaus, T. Bland, E. Poli, C. Politi, G. Lamporesi, E. Casotti, R.N. Bisset, M.J. Mark, F. Ferlaino, Observation of vortices and vortex stripes in a dipolar condensate. Nat. Phys. 18(12), 1453–1458 (2022). https://doi.org/10.1038/s41567-022-01793-8

    Article  Google Scholar 

  47. E. Casotti, E. Poli, L. Klaus, A. Litvinov, C. Ulm, C. Politi, M.J. Mark, T.F. Ferlaino, Observation of Vortices in a Dipolar Supersolid (2024) arXiv:2403.18510 [cond-mat.quant-gas]

  48. A. Recati, S. Stringari, Supersolidity in ultracold dipolar gases. Nat. Rev. Phys. 5(12), 735–743 (2023). https://doi.org/10.1038/s42254-023-00648-2. arXiv:2405.09537 [cond-mat.quant-gas]

    Article  Google Scholar 

  49. S.M. Roccuzzo, A. Gallemí, A. Recati, S. Stringari, Rotating a supersolid dipolar gas. Phys. Rev. Lett. 124, 045702 (2020). https://doi.org/10.1103/PhysRevLett.124.045702

    Article  ADS  Google Scholar 

  50. A. Gallemí, S.M. Roccuzzo, S. Stringari, A. Recati, Quantized vortices in dipolar supersolid bose-einstein-condensed gases. Phys. Rev. A 102, 023322 (2020). https://doi.org/10.1103/PhysRevA.102.023322

    Article  ADS  Google Scholar 

  51. F. Ancilotto, M. Barranco, M. Pi, L. Reatto, Vortex properties in the extended supersolid phase of dipolar bose-einstein condensates. Phys. Rev. A 103, 033314 (2021). https://doi.org/10.1103/PhysRevA.103.033314

    Article  ADS  Google Scholar 

  52. D. Butts, D. Rokhsar, Predicted signatures of rotating Bose–Einstein condensates. Nature 397, 327–9 (1999). https://doi.org/10.1038/16865

    Article  ADS  Google Scholar 

  53. F. Wächtler, L. Santos, Quantum filaments in dipolar Bose–Einstein condensates. Phys. Rev. A 93, 061603 (2016). https://doi.org/10.1103/PhysRevA.93.061603

    Article  ADS  Google Scholar 

  54. R.N. Bisset, R.M. Wilson, D. Baillie, P.B. Blakie, Ground-state phase diagram of a dipolar condensate with quantum fluctuations. Phys. Rev. A 94, 033619 (2016). https://doi.org/10.1103/PhysRevA.94.033619

    Article  ADS  Google Scholar 

  55. I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016). https://doi.org/10.1103/PhysRevLett.116.215301

    Article  ADS  Google Scholar 

  56. L. Chomaz, S. Baier, D. Petter, M.J. Mark, F. Wächtler, L. Santos, F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016). https://doi.org/10.1103/PhysRevX.6.041039

    Article  Google Scholar 

  57. A.S. Bradley, B.P. Anderson, Energy spectra of vortex distributions in two-dimensional quantum turbulence. Phys. Rev. X 2, 041001 (2012). https://doi.org/10.1103/PhysRevX.2.041001

    Article  Google Scholar 

  58. I.-K. Liu, S.B. Prasad, A.W. Baggaley, C.F. Barenghi, T.S. Wood, Vortex depinning in a two-dimensional superfluid. J. Low Temp. Phys. Spec. Issue Quant. Fluids Solids (2024). https://doi.org/10.1007/s10909-024-03064-7

    Article  Google Scholar 

  59. A.L. Fetter, Vortices in an imperfect bose gas. IV. Transl. Velocity. Phys. Rev. 151, 100–104 (1966). https://doi.org/10.1103/PhysRev.151.100

    Article  Google Scholar 

  60. Y. Pomeau, S. Rica, Dynamics of a model of supersolid. Phys. Rev. Lett. 72, 2426–2429 (1994). https://doi.org/10.1103/PhysRevLett.72.2426

    Article  ADS  Google Scholar 

  61. A.J. Groszek, D.M. Paganin, K. Helmerson, T.P. Simula, Motion of vortices in inhomogeneous Bose–Einstein condensates. Phys. Rev. A 97, 023617 (2018). https://doi.org/10.1103/PhysRevA.97.023617

    Article  ADS  Google Scholar 

  62. T. Bland, G. Lamporesi, M.J. Mark, F. Ferlaino, Vortices in dipolar Bose–Einstein condensates. Comptes Rendus. Physique 24, 133–152 (2023). https://doi.org/10.5802/crphys.160

    Article  Google Scholar 

Download references

Acknowledgements

This study received support from the European Research Council through the Advanced Grant DyMETEr (No. 101054500), the QuantERA Grant MAQS by the Austrian Science Fund (FWF) (No. I4391-N), the DFG/FWF via Dipolare E2 (No. I4317-N36) and a joint-project Grant from the FWF (No. I4426). EP acknowledges support by the FWF within the DK-ALM (No. W1259-N27). TB acknowledges financial support by the ESQ Discovery programme (Erwin Schrödinger Center for Quantum Science & Technology), hosted by the Austrian Academy of Sciences (ÖAW).

Author information

Authors and Affiliations

Authors

Contributions

MM and ST wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Francesca Ferlaino or Massimo Mannarelli.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bland, T., Ferlaino, F., Mannarelli, M. et al. Exploring Pulsar Glitches with Dipolar Supersolids. Few-Body Syst 65, 81 (2024). https://doi.org/10.1007/s00601-024-01949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01949-7

Navigation