Abstract
Glitches are sudden spin-up events that interrupt the gradual spin-down of rotating neutron stars. They are believed to arise from the rapid unpinning of vortices in the neutron star inner crust. The analogy between the inner crust of neutron stars and dipolar supersolids allows to investigate glitches. Employing such analogy, we numerically analyze the vortex trapping mechanism and how the matter density distribution influences glitches. These results pave the way for the quantum simulation of celestial bodies in laboratories.
Similar content being viewed by others
Data Availability
No datasets were generated or analysed during the current study.
References
E. Poli, T. Bland, S.J.M. White, M.J. Mark, F. Ferlaino, S. Trabucco, M. Mannarelli, Glitches in rotating supersolids. Phys. Rev. Lett. 131(22), 223401 (2023). https://doi.org/10.1103/PhysRevLett.131.223401. arXiv:2306.09698 [cond-mat.quant-gas]
S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)
N.K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Springer, New York, 2000)
P. Haensel, B. Pichon, Experimental nuclear masses and the ground state of cold dense matter. Astron. Astrophys. 283(1), 313–318 (1994). https://doi.org/10.48550/arXiv.nucl-th/9310003. arXiv:nucl-th/9310003 [nucl-th]
J.M. Lattimer, M. Prakash, Neutron star structure and the equation of state. Astrophys. J. 550, 426 (2001). https://doi.org/10.1086/319702. arXiv:astro-ph/0002232 [astro-ph]
F. Douchin, P. Haensel, A unified equation of state of dense matter and neutron star structure. Astron. Astrophys. 380, 151 (2001). https://doi.org/10.1051/0004-6361:20011402. arXiv:astro-ph/0111092 [astro-ph]
P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1: Equation of State and Structure vol. 326 (Springer, New York, 2007). https://doi.org/10.1007/978-0-387-47301-7
A.Y. Potekhin, A.F. Fantina, N. Chamel, J.M. Pearson, S. Goriely, Analytical representations of unified equations of state for neutron-star matter. Astron. Astrophys. 560, 48 (2013). https://doi.org/10.1051/0004-6361/201321697. arXiv:1310.0049 [astro-ph.SR]
B.K. Sharma, M. Centelles, X. Viñas, M. Baldo, G.F. Burgio, Unified equation of state for neutron stars on a microscopic basis. Astron. Astrophys. 584, 103 (2015). https://doi.org/10.1051/0004-6361/201526642. arXiv:1506.00375 [nucl-th]
B.K. Sharma, M. Centelles, X. Viñas, M. Baldo, G.F. Burgio, Unified equation of state for neutron stars on a microscopic basis. Astron. Astrophys. 584, 103 (2015). https://doi.org/10.1051/0004-6361/201526642. arXiv:1506.00375 [nucl-th]
G. Fiorella Burgio, A.F. Fantina, Nuclear equation of state for compact stars and supernovae. Astrophys. Space Sci. Libr. 457, 255–335 (2018). https://doi.org/10.1007/978-3-319-97616-7_6. arXiv:1804.03020 [nucl-th]
J.W. Negele, D. Vautherin, Neutron star matter at subnuclear densities. Nucl. Phys. A 207, 298–320 (1973). https://doi.org/10.1016/0375-9474(73)90349-7
A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins, Observation of a rapidly pulsating radio source. Nature 217(5130), 709–713 (1968). https://doi.org/10.1038/217709a0
O. Hamil, J.R. Stone, M. Urbanec, G. Urbancová, Braking index of isolated pulsars. Phys. Rev. D 91(6), 063007 (2015). https://doi.org/10.1103/PhysRevD.91.063007. arXiv:1608.01383 [astro-ph.HE]
V.M. Kaspi, M. Kramer, Radio pulsars: the neutron star population & fundamental physics, in 26th Solvay Conference on Physics: Astrophysics and Cosmology (2016)
S. Zhou, E. Gügercinoğlu, J. Yuan, M. Ge, C. Yu, Pulsar glitches: a review. Universe 8(12), 641 (2022). https://doi.org/10.3390/universe8120641
G. Baym, C. Pethick, D. Pines, M. Ruderman, Spin up in neutron stars: the future of the vela pulsar. Nature 224, 872 (1969). https://doi.org/10.1038/224872a0
M. Ruderman, Pulsars: structure and dynamics. Ann. Rev. Astron. Astrophys. 10, 427–476 (1972). https://doi.org/10.1146/annurev.aa.10.090172.002235
D. Pines, in Ventura, J., Pines, D. (eds.) Neutron Stars as Cosmic Hadron Physics Laboratories: What Glitches Teach Us, (Springer, Dordrecht, 1991), pp. 57–70 https://doi.org/10.1007/978-94-011-3536-8_5
B. Link, R.I. Epstein, J.M. Lattimer, Pulsar constraints on neutron star structure and equation of state. Phys. Rev. Lett. 83, 3362–3365 (1999). https://doi.org/10.1103/PhysRevLett.83.3362. arXiv:astro-ph/9909146
B. Haskell, A. Melatos, Models of Pulsar Glitches. Int. J. Mod. Phys. D 24(03), 1530008 (2015). https://doi.org/10.1142/S0218271815300086. arXiv:1502.07062 [astro-ph.SR]
P.W. Anderson, N. Itoh, Pulsar glitches and restlessness as a hard superfluidity phenomenon. Nature 256, 25–27 (1975). https://doi.org/10.1038/256025a0
M.A. Alpar, Pinning and Threading of Quantized Vortices in the Pulsar Crust Superfluid. Astrophys. J. 213, 527–530 (1977). https://doi.org/10.1086/155183
M.A. Alpar, D. Pines, P.W. Anderson, J. Shaham, Vortex creep and the internal temperature of neutron stars. I General Theory. Astrophys. J. 276, 325–334 (1984). https://doi.org/10.1086/161616
M.A. Alpar, P.W. Anderson, D. Pines, J. Shaham, Vortex creep and the internal temperature of neutron stars. II VELA Pulsar. Astrophys. J. 278, 791–805 (1984). https://doi.org/10.1086/161849
B. Link, R.I. Epstein, K.A. Van Riper, Pulsar glitches as probes of neutron star interiors. Nature 359(6396), 616–618 (1992). https://doi.org/10.1038/359616a0
E. Altman et al., Quantum simulators: architectures and opportunities. PRX Quantum 2(1), 017003 (2021). https://doi.org/10.1103/PRXQuantum.2.017003. arXiv:1912.06938 [quant-ph]
D. Tsakadze, S.D. Tsakadze et al., Measurement of the relaxation time on acceleration of vessels with helium II and superfluidity in pulsars. Soviet Phys. JETP 37, 918–921 (1973)
J.S. Tsakadze, S.J. Tsakadze, Properties of slowly rotating helium II and the superfluidity of pulsars. J. Low Temp. Phys. 39, 649 (1980). https://doi.org/10.1007/BF00114899
L. Warszawski, A. Melatos, Gross-Pitaevskii model of pulsar glitches. Mon. Not. Roy. Astron. Soc. 415, 1611 (2011). https://doi.org/10.1111/j.1365-2966.2011.18803.x. arXiv:1103.6090 [astro-ph.SR]
L. Warszawski, A. Melatos, N. Berloff, Unpinning triggers for superfluid vortex avalanches. Phys. Rev. B 85, 104503 (2012). https://doi.org/10.1103/PhysRevB.85.104503. arXiv:1203.5133 [cond-mat.other]
L. Warszawski, A. Melatos, Knock-on processes in superfluid vortex avalanches and pulsar glitch statistics. Mon. Not. Roy. Astron. Soc. 428, 1911 (2013). https://doi.org/10.1093/mnras/sts108. arXiv:1210.2203 [astro-ph.HE]
V. Graber, N. Andersson, M. Hogg, Neutron stars in the laboratory. Int. J. Mod. Phys. D 26(08), 1730015 (2017)
J. You, S. Yi, Y. Deng, Self-Ordered Supersolid in Spinor Condensates with Cavity-Mediated Spin-Momentum-Mixing Interactions (2024) arXiv:2404.11157 [cond-mat.quant-gas]
A. Alaña, M. Modugno, P. Capuzzi, D.M. Jezek, Phase-Induced Vortex Pinning in Rotating Supersolid Dipolar Systems (2024) arXiv:2405.05099 [cond-mat.quant-gas]
P. Magierski, A. Barresi, A. Makowski, D. Pecak, G. Wlazłowski, Quantum Vortices in Fermionic Superfluids: From Ultracold Atoms to Neutron Stars (2024) arXiv:2406.14158 [cond-mat.quant-gas]
S. Shukla, M. E. Brachet, R. Pandit, Neutron-superfluid vortices and proton-superconductor flux tubes: Development of a minimal model for pulsar glitches (2024) arXiv:2405.12127
A.J. Leggett, Can a solid be “superfluid’’? Phys. Rev. Lett. 25, 1543–1546 (1970). https://doi.org/10.1103/PhysRevLett.25.1543
J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F.Ç. Top, A.O. Jamison, W. Ketterle, A stripe phase with supersolid properties in spin-orbit-coupled Bose–Einstein condensates. Nature 543(7643), 91–94 (2017)
J. Léonard, A. Morales, P. Zupancic, T. Esslinger, T. Donner, Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543(7643), 87–90 (2017)
F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, T. Pfau, Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019). https://doi.org/10.1103/PhysRevX.9.011051
L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabbanini, R.N. Bisset, L. Santos, G. Modugno, Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019). https://doi.org/10.1103/PhysRevLett.122.130405
L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R.M.W. Bijnen, A. Patscheider, M. Sohmen, M.J. Mark, F. Ferlaino, Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019). https://doi.org/10.1103/PhysRevX.9.021012
M.A. Norcia, C. Politi, L. Klaus, E. Poli, M. Sohmen, M.J. Mark, R.N. Bisset, L. Santos, F. Ferlaino, Two-dimensional supersolidity in a dipolar quantum gas. Nature 596(7872), 357–361 (2021)
T. Bland, E. Poli, C. Politi, L. Klaus, M. Norcia, F. Ferlaino, L. Santos, R. Bisset, Two-dimensional supersolid formation in dipolar condensates. Phys. Rev. Lett. 128(19), 195302 (2022)
L. Klaus, T. Bland, E. Poli, C. Politi, G. Lamporesi, E. Casotti, R.N. Bisset, M.J. Mark, F. Ferlaino, Observation of vortices and vortex stripes in a dipolar condensate. Nat. Phys. 18(12), 1453–1458 (2022). https://doi.org/10.1038/s41567-022-01793-8
E. Casotti, E. Poli, L. Klaus, A. Litvinov, C. Ulm, C. Politi, M.J. Mark, T.F. Ferlaino, Observation of Vortices in a Dipolar Supersolid (2024) arXiv:2403.18510 [cond-mat.quant-gas]
A. Recati, S. Stringari, Supersolidity in ultracold dipolar gases. Nat. Rev. Phys. 5(12), 735–743 (2023). https://doi.org/10.1038/s42254-023-00648-2. arXiv:2405.09537 [cond-mat.quant-gas]
S.M. Roccuzzo, A. Gallemí, A. Recati, S. Stringari, Rotating a supersolid dipolar gas. Phys. Rev. Lett. 124, 045702 (2020). https://doi.org/10.1103/PhysRevLett.124.045702
A. Gallemí, S.M. Roccuzzo, S. Stringari, A. Recati, Quantized vortices in dipolar supersolid bose-einstein-condensed gases. Phys. Rev. A 102, 023322 (2020). https://doi.org/10.1103/PhysRevA.102.023322
F. Ancilotto, M. Barranco, M. Pi, L. Reatto, Vortex properties in the extended supersolid phase of dipolar bose-einstein condensates. Phys. Rev. A 103, 033314 (2021). https://doi.org/10.1103/PhysRevA.103.033314
D. Butts, D. Rokhsar, Predicted signatures of rotating Bose–Einstein condensates. Nature 397, 327–9 (1999). https://doi.org/10.1038/16865
F. Wächtler, L. Santos, Quantum filaments in dipolar Bose–Einstein condensates. Phys. Rev. A 93, 061603 (2016). https://doi.org/10.1103/PhysRevA.93.061603
R.N. Bisset, R.M. Wilson, D. Baillie, P.B. Blakie, Ground-state phase diagram of a dipolar condensate with quantum fluctuations. Phys. Rev. A 94, 033619 (2016). https://doi.org/10.1103/PhysRevA.94.033619
I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016). https://doi.org/10.1103/PhysRevLett.116.215301
L. Chomaz, S. Baier, D. Petter, M.J. Mark, F. Wächtler, L. Santos, F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016). https://doi.org/10.1103/PhysRevX.6.041039
A.S. Bradley, B.P. Anderson, Energy spectra of vortex distributions in two-dimensional quantum turbulence. Phys. Rev. X 2, 041001 (2012). https://doi.org/10.1103/PhysRevX.2.041001
I.-K. Liu, S.B. Prasad, A.W. Baggaley, C.F. Barenghi, T.S. Wood, Vortex depinning in a two-dimensional superfluid. J. Low Temp. Phys. Spec. Issue Quant. Fluids Solids (2024). https://doi.org/10.1007/s10909-024-03064-7
A.L. Fetter, Vortices in an imperfect bose gas. IV. Transl. Velocity. Phys. Rev. 151, 100–104 (1966). https://doi.org/10.1103/PhysRev.151.100
Y. Pomeau, S. Rica, Dynamics of a model of supersolid. Phys. Rev. Lett. 72, 2426–2429 (1994). https://doi.org/10.1103/PhysRevLett.72.2426
A.J. Groszek, D.M. Paganin, K. Helmerson, T.P. Simula, Motion of vortices in inhomogeneous Bose–Einstein condensates. Phys. Rev. A 97, 023617 (2018). https://doi.org/10.1103/PhysRevA.97.023617
T. Bland, G. Lamporesi, M.J. Mark, F. Ferlaino, Vortices in dipolar Bose–Einstein condensates. Comptes Rendus. Physique 24, 133–152 (2023). https://doi.org/10.5802/crphys.160
Acknowledgements
This study received support from the European Research Council through the Advanced Grant DyMETEr (No. 101054500), the QuantERA Grant MAQS by the Austrian Science Fund (FWF) (No. I4391-N), the DFG/FWF via Dipolare E2 (No. I4317-N36) and a joint-project Grant from the FWF (No. I4426). EP acknowledges support by the FWF within the DK-ALM (No. W1259-N27). TB acknowledges financial support by the ESQ Discovery programme (Erwin Schrödinger Center for Quantum Science & Technology), hosted by the Austrian Academy of Sciences (ÖAW).
Author information
Authors and Affiliations
Contributions
MM and ST wrote the main manuscript text. All authors reviewed the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bland, T., Ferlaino, F., Mannarelli, M. et al. Exploring Pulsar Glitches with Dipolar Supersolids. Few-Body Syst 65, 81 (2024). https://doi.org/10.1007/s00601-024-01949-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00601-024-01949-7