Abstract
We address the question of the reliability of the Born-Oppenheimer (BO) approximation for a mass-imbalanced resonant three-body system embedded in noninteger dimensions. We address this question within the problem of a system of currently experimental interest, namely \(^7\)Li\(-^{87}\)Rb\(_2\). We compare the Efimov scale parameter as well as the wave functions obtained using the BO approximation with those obtained using the Bethe-Peierls boundary condition.
Similar content being viewed by others
Data Availability
No datasets were generated or analysed during the current study.
References
V. Efimov, Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33(8), 563–564 (1970). https://doi.org/10.1016/0370-2693(70)90349-7
E. Braaten, H.-W. Hammer, Universality in few-body systems with large scattering length. Phys. Rept. 428, 259–390 (2006). https://doi.org/10.1016/j.physrep.2006.03.001. arXiv:cond-mat/0410417
T. Frederico, A. Delfino, L. Tomio, M.T. Yamashita, Universal aspects of light halo nuclei. Prog. Part. Nucl. Phys. 67, 939–994 (2012). https://doi.org/10.1016/j.ppnp.2012.06.001
C.H. Greene, P. Giannakeas, J. Pérez-Ríos, Universal few-body physics and cluster formation. Rev. Mod. Phys. 89, 035006 (2017). https://doi.org/10.1103/RevModPhys.89.035006
E. Braaten, H.-W. Hammer, Efimov physics in cold atoms. Ann. Phys. 322(1), 120–163 (2007). https://doi.org/10.1016/j.aop.2006.10.011. (January Special Issue 2007)
S. Moroz, J.P. D’Incao, D.S. Petrov, Generalized \(\text{ Efimov }\) effect in one dimension. Phys. Rev. Lett. 115, 180406 (2015). https://doi.org/10.1103/PhysRevLett.115.180406
M.J. Gullans, S. Diehl, S.T. Rittenhouse, B.P. Ruzic, J.P. D’Incao, P. Julienne, A.V. Gorshkov, J.M. Taylor, Efimov states of strongly interacting photons. Phys. Rev. Lett. 119, 233601 (2017). https://doi.org/10.1103/PhysRevLett.119.233601
M. Sun, H. Zhai, X. Cui, Visualizing the \(\text{ Efimov }\) correlation in bose polarons. Phys. Rev. Lett. 119, 013401 (2017). https://doi.org/10.1103/PhysRevLett.119.013401
T. Kraemer, M. Mark, P. Waldburger, J. Danzl, C. Chin, B. Engeser, A. Lange, K. Pilch, A. Jaakkola, H. Nagerl, R. Grimm, Evidence for \(\text{ Efimov }\) quantum states in an ultracold gas of caesium atoms. Nature 440(7082), 315–318 (2006). https://doi.org/10.1038/nature04626
C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010). https://doi.org/10.1103/RevModPhys.82.1225
B. Huang, L.A. Sidorenkov, R. Grimm, J.M. Hutson, Observation of the second triatomic resonance in \(\text{ Efimov }\)’s scenario. Phys. Rev. Lett. 112, 190401 (2014). https://doi.org/10.1103/PhysRevLett.112.190401
J.R. Williams, E.L. Hazlett, J.H. Huckans, R.W. Stites, Y. Zhang, K.M. O’Hara, Evidence for an excited-state \(\text{ Efimov }\) trimer in a three-component fermi gas. Phys. Rev. Lett. 103, 130404 (2009). https://doi.org/10.1103/PhysRevLett.103.130404
R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E.D. Kuhnle, M. Weidemüller, Observation of \(\text{ Efimov }\) resonances in a mixture with extreme mass imbalance. Phys. Rev. Lett. 112, 250404 (2014). https://doi.org/10.1103/PhysRevLett.112.250404
S.-K. Tung, K. Jiménez-García, J. Johansen, C.V. Parker, C. Chin, Geometric scaling of \(\text{ Efimov }\) states in a \(^{6}\) li - \(^{133}\)cs mixture. Phys. Rev. Lett. 113, 240402 (2014). https://doi.org/10.1103/PhysRevLett.113.240402
R.S. Bloom, M.-G. Hu, T.D. Cumby, D.S. Jin, Tests of universal three-body physics in an ultracold bose-fermi mixture. Phys. Rev. Lett. 111, 105301 (2013). https://doi.org/10.1103/PhysRevLett.111.105301
P. Naidon, S. Endo, Efimov physics: a review. Rept. Prog. Phys. 80(5), 056001 (2017). https://doi.org/10.1088/1361-6633/aa50e8. arXiv:1610.09805 [quant-ph]
E. Nielsen, D.V. Fedorov, A.S. Jensen, E. Garrido, The three-body problem with short-range interactions. Phys. Rep. 347(5), 373–459 (2001). https://doi.org/10.1016/S0370-1573(00)00107-1
A. Mohapatra, E. Braaten, Conformality lost in \(\text{ Efimov }\) physics. Phys. Rev. A 98, 013633 (2018). https://doi.org/10.1103/PhysRevA.98.013633
E.R. Christensen, A.S. Jensen, E. Garrido, Efimov states of three unequal bosons in non-integer dimensions. Few Body Syst. 59, 136 (2018). https://doi.org/10.1007/s00601-018-1457-9. arXiv:1809.09016 [physics.atm-clus]
E. Garrido, E.R. Christensen, A.S. Jensen, Three-body continuum states and \(\text{ Efimov }\) physics in noninteger geometry. Phys. Rev. A 106, 013307 (2022). https://doi.org/10.1103/PhysRevA.106.013307
E. Garrido, A.S. Jensen, Efimov effect in non-integer dimensions induced by an external field. Phys. Lett. A 385, 126982 (2021). https://doi.org/10.1016/j.physleta.2020.126982
D.S. Rosa, T. Frederico, G. Krein, M.T. Yamashita, Efimov effect in \(d\) spatial dimensions in \(aab\) systems. Phys. Rev. A 97, 050701 (2018). https://doi.org/10.1103/PhysRevA.97.050701
E. Garrido, A.S. Jensen, Confinement of n-body systems and non-integer dimensions. Few-Body Syst. (2024). https://doi.org/10.1007/s00601-024-01906-4
E. Garrido, A.S. Jensen, Three identical bosons: properties in noninteger dimensions and in external fields. Phys. Rev. Res. 2(3), 033261 (2020). https://doi.org/10.1103/PhysRevResearch.2.033261. arXiv:2007.15900 [cond-mat.quant-gas]
D.S. Petrov, M. Holzmann, G.V. Shlyapnikov, Bose-Einstein condensation in Quasi- D-2 trapped gases. Phys. Rev. Lett. 84, 2551–2555 (2000). https://doi.org/10.1103/PhysRevLett.84.2551. arXiv:cond-mat/9909344
M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, T. Esslinger, Bose-Einstein condensates in 1d-and 2d optical lattices. Appl. Phys. B 73, 769–772 (2001). https://doi.org/10.1007/s003400100744
H. Bethe, R. Peierls, Quantum theory of the diplon. Proc. R. Soc. Lond. A 148, 146 (1935). https://doi.org/10.1098/rspa.1935.0010
T.K. Lim, P.A. Maurone, Nonexistence of the efimov effect in two dimensions. Phys. Rev. B 22, 1467–1469 (1980). https://doi.org/10.1103/PhysRevB.22.1467
A. Bulgac, V. Efimov, Spin dependence of the level spectrum of three resonantly interacting particles. Sov. J. Nucl. Phys. 22, 296–307 (1975)
V. Efimov, Energy levels of three resonantly interacting particles. Nucl. Phys. A 210(1), 157–188 (1973). https://doi.org/10.1016/0375-9474(73)90510-1
F.F. Bellotti, T. Frederico, M.T. Yamashita, D.V. Fedorov, A.S. Jensen, N.T. Zinner, Mass-imbalanced three-body systems in two dimensions. J. Phys. B Atomic Mol. Opt. Phys. 46(5), 055301 (2013). https://doi.org/10.1088/0953-4075/46/5/055301
S. Häfner, J. Ulmanis, E.D. Kuhnle, Y. Wang, C.H. Greene, M. Weidemüller, Role of the intraspecies scattering length in the efimov scenario with large mass difference. Phys. Rev. A 95, 062708 (2017). https://doi.org/10.1103/PhysRevA.95.062708
A.C. Fonseca, E.F. Redish, P.E. Shanley, Efimov effect in an analytically solvable model. Nucl. Phys. A 320(2), 273–288 (1979). https://doi.org/10.1016/0375-9474(79)90189-1
D.S. Rosa, T. Frederico, G. Krein, M.T. Yamashita, Efimov effect in a \(d\)-dimensional \(\text{ Born-Oppenheimer }\) approach. J. Phys. B Atomic Mol. Opt. Phys. 52(2), 025101 (2018). https://doi.org/10.1088/1361-6455/aaf346
R.M. Francisco, D.S. Rosa, T. Frederico, Two heavy impurities immersed in light few-boson systems with noninteger dimensions. Phys. Rev. A 106, 063305 (2022). https://doi.org/10.1103/PhysRevA.106.063305
D.S. Rosa, F.F. Bellotti, A.S. Jensen, G. Krein, M.T. Yamashita, Bound states of a light atom and two heavy dipoles in two dimensions. Phys. Rev. A 94, 062707 (2016). https://doi.org/10.1103/PhysRevA.94.062707
D.S. Rosa, T. Frederico, G. Krein, M.T. Yamashita, \(d\)-dimensional three-body bound-state problem with zero-range interactions. Phys. Rev. A 106, 023311 (2022). https://doi.org/10.1103/PhysRevA.106.023311
W. Magnus, F. Oberhettinger, R.P. Soni, Oberhettinger: formulas and theorems for the special functions of mathematical physics (Springer, New York, 1966)
L.H. Thomas, The interaction between a neutron and a proton and the structure of \({\rm h }^{3}\). Phys. Rev. 47, 903–909 (1935). https://doi.org/10.1103/PhysRev.47.903
H.-W. Hammer, D. Lee, Causality and the effective range expansion. Ann. Phys. 325(10), 2212–2233 (2010). https://doi.org/10.1016/j.aop.2010.06.006
R.M. Francisco, D.S. Rosa, T. Frederico, Two heavy impurities immersed in light few-boson systems with noninteger dimensions. Phys. Rev. A 106, 063305 (2022). https://doi.org/10.1103/PhysRevA.106.063305
Acknowledgements
This work was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Grant nos. 2017/05660-0 and 2019/07767-1 (T.F.), 2023/08600-9 (R.M.F.), 2023/02261-8 (D.S.R.) and 2018/25225-9 (G.K.)], Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [Grant nos. 306834/2022-7 (T.F.), 302105/2022-0 (M.T.Y.), and 309262/2019-4 (G.K.)] and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [Grant no. 88887.928099/2023-00 (D.S.R.)].
Author information
Authors and Affiliations
Contributions
The authors contributed equally to this work.
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rosa, D.S., Frederico, T., Francisco, R.M. et al. Reliability of the Born-Oppenheimer Approximation in Noninteger Dimensions. Few-Body Syst 65, 77 (2024). https://doi.org/10.1007/s00601-024-01946-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00601-024-01946-w