Skip to main content
Log in

Reliability of the Born-Oppenheimer Approximation in Noninteger Dimensions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We address the question of the reliability of the Born-Oppenheimer (BO) approximation for a mass-imbalanced resonant three-body system embedded in noninteger dimensions. We address this question within the problem of a system of currently experimental interest, namely \(^7\)Li\(-^{87}\)Rb\(_2\). We compare the Efimov scale parameter as well as the wave functions obtained using the BO approximation with those obtained using the Bethe-Peierls boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. V. Efimov, Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33(8), 563–564 (1970). https://doi.org/10.1016/0370-2693(70)90349-7

    Article  ADS  Google Scholar 

  2. E. Braaten, H.-W. Hammer, Universality in few-body systems with large scattering length. Phys. Rept. 428, 259–390 (2006). https://doi.org/10.1016/j.physrep.2006.03.001. arXiv:cond-mat/0410417

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Frederico, A. Delfino, L. Tomio, M.T. Yamashita, Universal aspects of light halo nuclei. Prog. Part. Nucl. Phys. 67, 939–994 (2012). https://doi.org/10.1016/j.ppnp.2012.06.001

    Article  ADS  Google Scholar 

  4. C.H. Greene, P. Giannakeas, J. Pérez-Ríos, Universal few-body physics and cluster formation. Rev. Mod. Phys. 89, 035006 (2017). https://doi.org/10.1103/RevModPhys.89.035006

    Article  ADS  MathSciNet  Google Scholar 

  5. E. Braaten, H.-W. Hammer, Efimov physics in cold atoms. Ann. Phys. 322(1), 120–163 (2007). https://doi.org/10.1016/j.aop.2006.10.011. (January Special Issue 2007)

    Article  ADS  Google Scholar 

  6. S. Moroz, J.P. D’Incao, D.S. Petrov, Generalized \(\text{ Efimov }\) effect in one dimension. Phys. Rev. Lett. 115, 180406 (2015). https://doi.org/10.1103/PhysRevLett.115.180406

    Article  ADS  Google Scholar 

  7. M.J. Gullans, S. Diehl, S.T. Rittenhouse, B.P. Ruzic, J.P. D’Incao, P. Julienne, A.V. Gorshkov, J.M. Taylor, Efimov states of strongly interacting photons. Phys. Rev. Lett. 119, 233601 (2017). https://doi.org/10.1103/PhysRevLett.119.233601

    Article  ADS  Google Scholar 

  8. M. Sun, H. Zhai, X. Cui, Visualizing the \(\text{ Efimov }\) correlation in bose polarons. Phys. Rev. Lett. 119, 013401 (2017). https://doi.org/10.1103/PhysRevLett.119.013401

    Article  ADS  Google Scholar 

  9. T. Kraemer, M. Mark, P. Waldburger, J. Danzl, C. Chin, B. Engeser, A. Lange, K. Pilch, A. Jaakkola, H. Nagerl, R. Grimm, Evidence for \(\text{ Efimov }\) quantum states in an ultracold gas of caesium atoms. Nature 440(7082), 315–318 (2006). https://doi.org/10.1038/nature04626

    Article  ADS  Google Scholar 

  10. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010). https://doi.org/10.1103/RevModPhys.82.1225

    Article  ADS  Google Scholar 

  11. B. Huang, L.A. Sidorenkov, R. Grimm, J.M. Hutson, Observation of the second triatomic resonance in \(\text{ Efimov }\)’s scenario. Phys. Rev. Lett. 112, 190401 (2014). https://doi.org/10.1103/PhysRevLett.112.190401

    Article  ADS  Google Scholar 

  12. J.R. Williams, E.L. Hazlett, J.H. Huckans, R.W. Stites, Y. Zhang, K.M. O’Hara, Evidence for an excited-state \(\text{ Efimov }\) trimer in a three-component fermi gas. Phys. Rev. Lett. 103, 130404 (2009). https://doi.org/10.1103/PhysRevLett.103.130404

    Article  ADS  Google Scholar 

  13. R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E.D. Kuhnle, M. Weidemüller, Observation of \(\text{ Efimov }\) resonances in a mixture with extreme mass imbalance. Phys. Rev. Lett. 112, 250404 (2014). https://doi.org/10.1103/PhysRevLett.112.250404

    Article  ADS  Google Scholar 

  14. S.-K. Tung, K. Jiménez-García, J. Johansen, C.V. Parker, C. Chin, Geometric scaling of \(\text{ Efimov }\) states in a \(^{6}\) li - \(^{133}\)cs mixture. Phys. Rev. Lett. 113, 240402 (2014). https://doi.org/10.1103/PhysRevLett.113.240402

    Article  ADS  Google Scholar 

  15. R.S. Bloom, M.-G. Hu, T.D. Cumby, D.S. Jin, Tests of universal three-body physics in an ultracold bose-fermi mixture. Phys. Rev. Lett. 111, 105301 (2013). https://doi.org/10.1103/PhysRevLett.111.105301

    Article  ADS  Google Scholar 

  16. P. Naidon, S. Endo, Efimov physics: a review. Rept. Prog. Phys. 80(5), 056001 (2017). https://doi.org/10.1088/1361-6633/aa50e8. arXiv:1610.09805 [quant-ph]

    Article  ADS  Google Scholar 

  17. E. Nielsen, D.V. Fedorov, A.S. Jensen, E. Garrido, The three-body problem with short-range interactions. Phys. Rep. 347(5), 373–459 (2001). https://doi.org/10.1016/S0370-1573(00)00107-1

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Mohapatra, E. Braaten, Conformality lost in \(\text{ Efimov }\) physics. Phys. Rev. A 98, 013633 (2018). https://doi.org/10.1103/PhysRevA.98.013633

    Article  ADS  Google Scholar 

  19. E.R. Christensen, A.S. Jensen, E. Garrido, Efimov states of three unequal bosons in non-integer dimensions. Few Body Syst. 59, 136 (2018). https://doi.org/10.1007/s00601-018-1457-9. arXiv:1809.09016 [physics.atm-clus]

    Article  ADS  Google Scholar 

  20. E. Garrido, E.R. Christensen, A.S. Jensen, Three-body continuum states and \(\text{ Efimov }\) physics in noninteger geometry. Phys. Rev. A 106, 013307 (2022). https://doi.org/10.1103/PhysRevA.106.013307

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Garrido, A.S. Jensen, Efimov effect in non-integer dimensions induced by an external field. Phys. Lett. A 385, 126982 (2021). https://doi.org/10.1016/j.physleta.2020.126982

    Article  MathSciNet  Google Scholar 

  22. D.S. Rosa, T. Frederico, G. Krein, M.T. Yamashita, Efimov effect in \(d\) spatial dimensions in \(aab\) systems. Phys. Rev. A 97, 050701 (2018). https://doi.org/10.1103/PhysRevA.97.050701

    Article  ADS  Google Scholar 

  23. E. Garrido, A.S. Jensen, Confinement of n-body systems and non-integer dimensions. Few-Body Syst. (2024). https://doi.org/10.1007/s00601-024-01906-4

    Article  Google Scholar 

  24. E. Garrido, A.S. Jensen, Three identical bosons: properties in noninteger dimensions and in external fields. Phys. Rev. Res. 2(3), 033261 (2020). https://doi.org/10.1103/PhysRevResearch.2.033261. arXiv:2007.15900 [cond-mat.quant-gas]

    Article  Google Scholar 

  25. D.S. Petrov, M. Holzmann, G.V. Shlyapnikov, Bose-Einstein condensation in Quasi- D-2 trapped gases. Phys. Rev. Lett. 84, 2551–2555 (2000). https://doi.org/10.1103/PhysRevLett.84.2551. arXiv:cond-mat/9909344

    Article  ADS  Google Scholar 

  26. M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, T. Esslinger, Bose-Einstein condensates in 1d-and 2d optical lattices. Appl. Phys. B 73, 769–772 (2001). https://doi.org/10.1007/s003400100744

    Article  ADS  Google Scholar 

  27. H. Bethe, R. Peierls, Quantum theory of the diplon. Proc. R. Soc. Lond. A 148, 146 (1935). https://doi.org/10.1098/rspa.1935.0010

    Article  ADS  Google Scholar 

  28. T.K. Lim, P.A. Maurone, Nonexistence of the efimov effect in two dimensions. Phys. Rev. B 22, 1467–1469 (1980). https://doi.org/10.1103/PhysRevB.22.1467

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Bulgac, V. Efimov, Spin dependence of the level spectrum of three resonantly interacting particles. Sov. J. Nucl. Phys. 22, 296–307 (1975)

    Google Scholar 

  30. V. Efimov, Energy levels of three resonantly interacting particles. Nucl. Phys. A 210(1), 157–188 (1973). https://doi.org/10.1016/0375-9474(73)90510-1

    Article  ADS  Google Scholar 

  31. F.F. Bellotti, T. Frederico, M.T. Yamashita, D.V. Fedorov, A.S. Jensen, N.T. Zinner, Mass-imbalanced three-body systems in two dimensions. J. Phys. B Atomic Mol. Opt. Phys. 46(5), 055301 (2013). https://doi.org/10.1088/0953-4075/46/5/055301

    Article  ADS  Google Scholar 

  32. S. Häfner, J. Ulmanis, E.D. Kuhnle, Y. Wang, C.H. Greene, M. Weidemüller, Role of the intraspecies scattering length in the efimov scenario with large mass difference. Phys. Rev. A 95, 062708 (2017). https://doi.org/10.1103/PhysRevA.95.062708

    Article  ADS  Google Scholar 

  33. A.C. Fonseca, E.F. Redish, P.E. Shanley, Efimov effect in an analytically solvable model. Nucl. Phys. A 320(2), 273–288 (1979). https://doi.org/10.1016/0375-9474(79)90189-1

    Article  ADS  Google Scholar 

  34. D.S. Rosa, T. Frederico, G. Krein, M.T. Yamashita, Efimov effect in a \(d\)-dimensional \(\text{ Born-Oppenheimer }\) approach. J. Phys. B Atomic Mol. Opt. Phys. 52(2), 025101 (2018). https://doi.org/10.1088/1361-6455/aaf346

    Article  ADS  Google Scholar 

  35. R.M. Francisco, D.S. Rosa, T. Frederico, Two heavy impurities immersed in light few-boson systems with noninteger dimensions. Phys. Rev. A 106, 063305 (2022). https://doi.org/10.1103/PhysRevA.106.063305

    Article  ADS  MathSciNet  Google Scholar 

  36. D.S. Rosa, F.F. Bellotti, A.S. Jensen, G. Krein, M.T. Yamashita, Bound states of a light atom and two heavy dipoles in two dimensions. Phys. Rev. A 94, 062707 (2016). https://doi.org/10.1103/PhysRevA.94.062707

    Article  ADS  Google Scholar 

  37. D.S. Rosa, T. Frederico, G. Krein, M.T. Yamashita, \(d\)-dimensional three-body bound-state problem with zero-range interactions. Phys. Rev. A 106, 023311 (2022). https://doi.org/10.1103/PhysRevA.106.023311

    Article  ADS  MathSciNet  Google Scholar 

  38. W. Magnus, F. Oberhettinger, R.P. Soni, Oberhettinger: formulas and theorems for the special functions of mathematical physics (Springer, New York, 1966)

    Book  Google Scholar 

  39. L.H. Thomas, The interaction between a neutron and a proton and the structure of \({\rm h }^{3}\). Phys. Rev. 47, 903–909 (1935). https://doi.org/10.1103/PhysRev.47.903

    Article  ADS  Google Scholar 

  40. H.-W. Hammer, D. Lee, Causality and the effective range expansion. Ann. Phys. 325(10), 2212–2233 (2010). https://doi.org/10.1016/j.aop.2010.06.006

    Article  ADS  MathSciNet  Google Scholar 

  41. R.M. Francisco, D.S. Rosa, T. Frederico, Two heavy impurities immersed in light few-boson systems with noninteger dimensions. Phys. Rev. A 106, 063305 (2022). https://doi.org/10.1103/PhysRevA.106.063305

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Grant nos. 2017/05660-0 and 2019/07767-1 (T.F.), 2023/08600-9 (R.M.F.), 2023/02261-8 (D.S.R.) and 2018/25225-9 (G.K.)], Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [Grant nos. 306834/2022-7 (T.F.), 302105/2022-0 (M.T.Y.), and 309262/2019-4 (G.K.)] and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [Grant no. 88887.928099/2023-00 (D.S.R.)].

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to T. Frederico.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, D.S., Frederico, T., Francisco, R.M. et al. Reliability of the Born-Oppenheimer Approximation in Noninteger Dimensions. Few-Body Syst 65, 77 (2024). https://doi.org/10.1007/s00601-024-01946-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01946-w

Navigation