Skip to main content
Log in

Algebraic Approach to the Nuclear Few-Body Systems

  • Published:
Few-Body Systems Aims and scope Submit manuscript


We present an algebraic approach for the construction of the model space for the few-body systems. The approach is suitable for the observable calculation. The model utilizes the translationally invariant harmonic oscillator basis. We extensively use the symmetric group apparatus for the fractional parentage coefficient calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. B.R. Barrett, P. Navrátil, J.P. Vary, Ab initio no core shell model. Prog. Part Nucl. Phys. 69, 131–181 (2013).

  2. G.P. Kamuntavičius, R.K. Kalinauskas, B.R. Barrett, S. Mickevičius, D. Germanas, The general harmonic-oscillator brackets: compact expression, symmetries, sums and fortran code. Nucl. Phys. A 695(1), 191–201 (2001).

    Article  ADS  Google Scholar 

  3. S. Liebig, U.-G. Meißner, A. Nogga, Jacobi no-core shell model for p-shell nuclei. Eur. Phys. J. A 52(4), 103 (2016).

    Article  ADS  Google Scholar 

  4. G.P. Kamuntavičius, P. Navratil, B.R. Barrett, G. Sapragonaite, R.K. Kalinauskas, Isoscalar Hamiltonians for light atomic nuclei. Phys. Rev. C 60, 044304 (1999).

    Article  ADS  Google Scholar 

  5. L. Huth, V. Durant, J. Simonis, A. Schwenk, Shell-model interactions from chiral effective field theory. Phys. Rev. C 98, 044301 (2018).

    Article  ADS  Google Scholar 

  6. G.P. Kamuntavičius, Reduced-Hamiltonian method in the theory of bound states of systems of identical particles. Sov. J. Part. Nucl. 20, 261 (1989)

    MathSciNet  Google Scholar 

  7. G.P. Kamuntavičius, Simple functional-differential equations for the bound-state wave-function components. Few-Body Syst. 1(2), 91–109 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. Vanagas, Algebraic Methods in Nuclear Theory (Mintis, Vilnius, 1971)

    Google Scholar 

  9. S. Eu, T. Fu, J.T. Hou, T. Hsu, Standard young tableaux and colored motzkin paths. J. Comb. Theory Ser. A 120(7), 1786–1803 (2013).

    Article  MathSciNet  Google Scholar 

  10. M. Hamermesh, Group Theory and its Application to Physics (Addison-Wesley, New York, 1963)

    Google Scholar 

  11. S. Mickevičius, A. Stepšys, D. Germanas, R.K. Kalinauskas, Calculating fractional-parentage coefficients for six body system in translational invariant basis. Phys. At. Nucl. 81(6), 899–906 (2018).

    Article  Google Scholar 

  12. D.A. Varshalovich et al., Quantum Theory of Angular Momentum (Nauka, Moscow, 1975)

    Google Scholar 

  13. A. Deveikis, R.K. Kalinauskas, B.R. Barrett, Calculation of coefficients of fractional parentage for large-basis harmonic-oscillator shell model. Ann. Phys. 296(2), 287–298 (2002).

    Article  ADS  Google Scholar 

  14. D. Germanas, R.K. Kalinauskas, S. Mickevičius, R. Žemaicčiu, Calculation of four-particle harmonic-oscillator transformation brackets (2008)

  15. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 51, 38–51 (1995).

    Article  ADS  Google Scholar 

  16. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. Swart, Construction of high-quality NN potential models. Phys. Rev. C 49, 2950–2962 (1994).

    Article  ADS  Google Scholar 

  17. S.K. Saha, D.R. Entem, R. Machleidt, Y. Nosyk, Local position-space two-nucleon potentials from leading to fourth order of chiral effective field theory. Phys. Rev. C 107, 034002 (2023).

    Article  ADS  Google Scholar 

  18. R. Machleidt, F. Sammarruca, Recent advances in chiral EFT based nuclear forces and their applications (2024). arXiv:2402.14032 [nucl-th]

  19. Jülich Supercomputing Centre: JURECA: data centric and booster modules implementing the modular supercomputing architecture at Jülich supercomputing centre. J. Large-scale Res. Facilit. 7(A182) (2021).

Download references


This project has received funding from the Research Council of Lithuania (LMTLT), agreement No S-PD-22-9 The authors gratefully acknowledge the computing time granted on the supercomputer JURECA [19] at Forschungszentrum Juelich.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Augustinas Stepšys.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All authors contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepšys, A., Mickevičius, S., Germanas, D. et al. Algebraic Approach to the Nuclear Few-Body Systems. Few-Body Syst 65, 67 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: