Skip to main content
Log in

Positronium Negative Ion Embedded in Non-ideal Classical Plasmas: Doubly Excited Singlet S States

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The effects of the non-ideality (NI) of the classical plasmas on the doubly excited singlet S states in the positronium negative ion (Ps\(^-\)) are investigated. The organised effect of the plasma is taken care of by means of a pseudopotential which is characterised by the Debye length D and the non-ideality parameter \(\gamma \). Using an extensive wavefunction within the framework of the stabilization method, it has been possible to identify four doubly excited states (DES) in Ps\(^-\). The convergence of the energy and the width of those states are corroborated by increasing the number of terms in the wavefunction. Our present calculation for the plasma-free case reproduces the established results. An inclusive study is made to quantify and qualify the changes experienced by the energies and the widths of those states due to the influence of the NI over a wide range. It is observed that the energy of each DES increases and the width of each DES diminishes due to the effect of the increasing NI of the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.N. Sil, S. Canuto, P.K. Mukherjee, Adv. Quant. Chem. 58, 115 (2009)

    Article  Google Scholar 

  2. R.K. Janev, S. Zhang, J. Wang, Matter Radiat. Extremes 1, 237 (2016)

    Article  Google Scholar 

  3. A. Ghoshal, Y.K. Ho, J. Phys. B At. Mol. Opt. Phys. 42, 075002 (2009)

    Article  ADS  Google Scholar 

  4. A. Ghoshal, Y.K. Ho, J. Phys. B At. Mol. Opt. Phys. 42, 175006 (2009)

    Article  ADS  Google Scholar 

  5. A. Ghoshal, Y.K. Ho, Eur. Phys. J. D 56, 151 (2010)

    Article  ADS  Google Scholar 

  6. A.K. Singh, D. Dawra, M. Dimri, A. Jha, R.K. Pandey, M. Mohan, Phys. Lett. A 384, 126369 (2020)

    Article  Google Scholar 

  7. F.B. Baimbetov, K.T. Nurekenov, T.S. Ramazanov, Phys. Lett. A 202, 211 (1995)

    Article  ADS  Google Scholar 

  8. V.E. Fortov, I.T. Yakubov, Physics of Nonideal Plasma (World Scientific, Singapore, 2000)

    Google Scholar 

  9. I.T. Iakubov, A.G. Khrapak, Transport and Optical Properties of Nonideal Plasma (Springer, Boston, MA, 1995). (Chap. I)

    Google Scholar 

  10. T.S. Ramazanov, Z.A. Moldabekov, M.T. Gabdullin, Phys. Rev. E 92, 023104 (2015)

    Article  ADS  Google Scholar 

  11. G. Dharuman, L.G. Stanton, M.S. Murillo, New J. Phys. 20, 103010 (2018)

    Article  ADS  Google Scholar 

  12. G. Manfredi, How to Model Quantum Plasmas (Fields Institute Communications, Toronto, 2004)

    Google Scholar 

  13. B. Das, A. Ghoshal, J. Phys. B At. Mol. Opt. Phys. 55, 185003 (2022)

    Article  ADS  Google Scholar 

  14. A. Karmakar, A. Ghoshal, Phys. Plasmas 26, 123504 (2019)

    Article  ADS  Google Scholar 

  15. N. Das, B. Das, A. Ghoshal, Phys. Plasmas 29, 073505 (2022)

    Article  ADS  Google Scholar 

  16. B. Das, A. Ghoshal, Phys. Plasmas 28, 123520 (2021)

    Article  ADS  Google Scholar 

  17. B. Das, N. Masanta, A. Ghoshal, Phys. Plasmas 28, 103504 (2021)

    Article  ADS  Google Scholar 

  18. B. Das, A. Ghoshal, Phys. Rev. E 101, 043202 (2020)

    Article  ADS  Google Scholar 

  19. B. Das, A. Karmakar, A. Ghoshal, Phys. Plasmas 26, 083507 (2019)

    Article  ADS  Google Scholar 

  20. K. Das, P. Rej, A. Ghoshal, Contrib. Plasma Phys. 60, e202000080 (2020). https://doi.org/10.1002/ctpp.202000080

    Article  ADS  Google Scholar 

  21. S.A. Khrapak, A.G. Khrapa, Results Phys. 17, 1031632 (2020)

    Article  Google Scholar 

  22. G. Dharuman, L.G. Stanton, M.S. Murillo, New J. Phys. 20, 103010 (2018)

    Article  ADS  Google Scholar 

  23. S. Mondal, S.K. Nayek, J.K. Saha, Eur. Phys. J. Plus 137, 373 (2022)

    Article  Google Scholar 

  24. N. Das, A. Ghoshal, Y.K. Ho, Phys. Plasmas 30, 063511 (2023)

    Article  ADS  Google Scholar 

  25. K. Das, B. Das, A. Ghoshal, Few-Body Syst. 64, 19 (2023)

    Article  ADS  Google Scholar 

  26. B. Das, A. Ghoshal, Few-Body Syst. 61, 22 (2020)

    Article  ADS  Google Scholar 

  27. B. Das, A. Ghoshal, Int. J. Quantum Chem. 121, e26649 (2021). https://doi.org/10.1002/qua.26649

    Article  Google Scholar 

  28. B. Das, A. Ghoshal, Phys. Plasmas 28, 023506 (2021)

    Article  Google Scholar 

  29. S.L. Talwar, S. Lumb, K.D. Sen, V. Prasad, J. Phys. B At. Mol. Opt. Phys. 56, 225002 (2023)

    Article  ADS  Google Scholar 

  30. N. Das, B. Das, A. Ghoshal, Int. J. Quantum Chem. 124, e27265 (2024). https://doi.org/10.1002/qua.27265

    Article  Google Scholar 

  31. A.U. Hazi, H.S. Taylor, Phys. Rev. A 1, 1109 (1970)

    Article  ADS  Google Scholar 

  32. A. Ghoshal, Y.K. Ho, Phys. Rev. A 95, 052502 (2017)

    Article  ADS  Google Scholar 

  33. J.A. Wheeler, N.Y. Ann, Acad. Sci. 48, 219 (1946)

    Article  ADS  Google Scholar 

  34. Y.K. Ho, Phys. Rev. A 19, 2347 (1979)

    Article  ADS  Google Scholar 

  35. A.P. Mills, Phys. Rev. Lett. 46, 717 (1980)

    Article  ADS  Google Scholar 

  36. A.P. Mills, Phys. Rev. Lett. 50, 671 (1982)

    Article  ADS  Google Scholar 

  37. J. Botero, C.H. Greene, Phys. Rev. Lett. 56, 1366 (1986)

    Article  ADS  Google Scholar 

  38. Y.K. Ho, Phys. Rev. A 48, 4780 (1993)

    Article  ADS  Google Scholar 

  39. Y.K. Ho, Chin. J. Phys. 35, 97 (1997)

    Google Scholar 

  40. J. Usukura, Y. Suzuki, Phys. Rev. A 66, 010502 (2002)

    Article  ADS  Google Scholar 

  41. T. Li, R. Shakeshaft, Phys. Rev. A 71, 052505 (2005)

    Article  ADS  Google Scholar 

  42. Z. Papp, J. Darai, C.Y. Hu, Z.T. Hlousek, B. Konya, S.L. Yakolev, Phys. Rev. A 65, 032725 (2002)

    Article  ADS  Google Scholar 

  43. Y.K. Ho, Resonances in positronium negative ions, in Proceedings for Temkin-Drachman Retirement Symposium (NASA/CP-2006-214146). ed. by A.K. Bhatia (Goddard Space Flight Center, New York, 2006), p.111

    Google Scholar 

  44. J.Z.S. Mezei, A.T. Kruppa, K. Varga, Few Body Syst. 41, 233 (2007)

    Article  ADS  Google Scholar 

  45. Y.K. Ho, Nucl. Instrum. Methods Phys. Res. B 266, 516 (2008)

    Article  ADS  Google Scholar 

  46. S. Kar, Y.K. Ho, Eur. Phys. J. D 57, 13 (2010)

    Article  ADS  Google Scholar 

  47. S. Kar, Y.K. Ho, Comput. Phys. Commun. 182, 119 (2011)

    Article  ADS  Google Scholar 

  48. Y. Nagashima, Phys. Rep. 545, 95 (2014)

    Article  ADS  Google Scholar 

  49. K. Michishio, T. Kanai, S. Kuma, T. Azuma, K. Wada, I. Mochizuki, T. Hyodo, A. Yagishita, Y. Nagashima, Nat. Commun. 7, 11060 (2016)

    Article  ADS  Google Scholar 

  50. S. Kar, Y.K. Ho, Eur. Phys. J. D 72, 193 (2018)

    Article  ADS  Google Scholar 

  51. S. Kar, Y.K. Ho, Atoms 8, 1 (2020)

    Article  ADS  Google Scholar 

  52. M.E. Razavi, J.W. Darewych, Eur. Phys. J. D 75, 188 (2021)

    Article  ADS  Google Scholar 

  53. Y.K. Ho, S. Kar, Few-Body Syst. 53, 437 (2012)

    Article  ADS  Google Scholar 

  54. S. Kar, Y.K. Ho, Phys. Rev. A 71, 052503 (2005)

    Article  ADS  Google Scholar 

  55. A. Ghoshal, Y.K. Ho, Eur. Phys. J. D 56, 151 (2010)

    Article  ADS  Google Scholar 

  56. E.L. Chupp, D.J. Forrest, P.R. Higbie, A.N. Suri, C. Tsai, P.P. Dunphy, Nature (London) 241, 333 (1973)

    Article  ADS  Google Scholar 

  57. M. Leventhal, C.J. MacCallum, S.D. Barthelmy, N. Gehrelst, B.J. Teegarden, J. Tueller, Nature (London) 339, 36 (1989)

    Article  ADS  Google Scholar 

  58. G. Weidenspointner, G. Skinner, P. Jean, J. Knodlseder, P. von Ballmoos, G. Bignami, R. Diehl, A.W. Strong, B. Cordier, S. Schanne, C. Winkler, Nature (London) 451, 159 (2008)

    Article  ADS  Google Scholar 

  59. V.A. Mandelshtam, T.R. Ravuri, H.S. Taylor, Phys. Rev. Lett. 70, 1932 (1993)

    Article  ADS  Google Scholar 

  60. S.S. Tan, Y.K. Ho, Chin. J. Phys. 35, 701 (1997)

    Google Scholar 

  61. A. Ghoshal, Y.K. Ho, Phys. Rev. A 79, 062514 (2009)

    Article  ADS  Google Scholar 

  62. Y.K. Ho, Phys. Rev. A 34, 4402 (1986)

    Article  ADS  Google Scholar 

  63. D.R. Herrick, O. Sinanoglu, Phys. Rev. A 11, 97 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board, India, through the Research Project (File No. CRG/2022/005219).

Author information

Authors and Affiliations

Authors

Contributions

N.D. carried out calculations, collected results, prepared figures and tables. A.G. conceptualized the problem, supervised calculations and wrote the main manuscript. Y.K.H mentored over-all things.

Corresponding author

Correspondence to Arijit Ghoshal.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, N., Ghoshal, A. & Ho, Y.K. Positronium Negative Ion Embedded in Non-ideal Classical Plasmas: Doubly Excited Singlet S States. Few-Body Syst 65, 46 (2024). https://doi.org/10.1007/s00601-024-01914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01914-4

Navigation