Skip to main content
Log in

Fermion-Antifermion Pair Exposed to Magnetic Flux in an Optical Wormhole

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We introduce an exactly soluble model for a fermion-antifermion pair exposed to magnetic flux in the hyperbolic wormhole. This model is based on an analytical solution of the corresponding two-body Dirac equation. We show a non-perturbative wave equation for such a pair in exactly soluble form. This makes it possible to acquire a complete energy spectrum. Results clearly show the effects of the magnetic flux as well as the wormhole background on the dynamics of the considered pair and such a composite system may behave as a single fermion or a single boson by depending on the magnetic flux. This implies that one can control the dynamics of such a pair in an optical background with constant negative Gaussian curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availibility

This manuscript has no associated data or the data will not be deposited.

References

  1. G. Breit, Phys. Rev. 34, 553 (1929)

    ADS  MathSciNet  Google Scholar 

  2. E.E. Salpeter, H.A. Bethe, Phys. Rev. 84, 1232 (1951)

    ADS  MathSciNet  Google Scholar 

  3. A.O. Barut, S. Komy, Fortschritte der Physik/Prog. Phys. 33, 309–318 (1985)

    ADS  Google Scholar 

  4. A.O. Barut, N. Ünal, Fortschritte der Physik/Prog. Phys. 33, 319–332 (1985)

    ADS  Google Scholar 

  5. A.O. Barut, N. Ünal, Physica A 142, 467–487 (1987)

    ADS  Google Scholar 

  6. A.O. Barut, N. Ünal, Physica A 142, 488–497 (1987)

    ADS  Google Scholar 

  7. M. Moshinsky, G. Loyola, Found. Phys. 23, 197–210 (1993)

    ADS  MathSciNet  Google Scholar 

  8. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    ADS  Google Scholar 

  9. A.K. Geim, Science 324, 1530–1534 (2009)

    ADS  Google Scholar 

  10. M. Banados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992)

    ADS  MathSciNet  Google Scholar 

  11. J. Sabio, F. Sols, F. Guinea, Phys. Rev. B 81, 045428 (2010)

    ADS  Google Scholar 

  12. C.A. Downing, M.E. Portnoi, Nat. Commun. 8, 897 (2017)

    ADS  Google Scholar 

  13. S.A. Bruce, Zeitschrift für Naturforschung A 77, 533–541 (2022)

    ADS  Google Scholar 

  14. A. Guvendi, R. Sahin, Y. Sucu, Eur. Phys. J. B 94, 1–7 (2021)

    Google Scholar 

  15. B.P. Mandal, S. Verma, Phys. Lett. A 374, 1021–1023 (2010)

    ADS  MathSciNet  Google Scholar 

  16. A. Bermudez, M.A. Martin-Delgado, E. Solano, Phys. Rev. A 76, 041801 (2007)

    ADS  Google Scholar 

  17. L. Brey, H.A. Fertig, Phys. Rev. B 73, 235411 (2006)

    ADS  Google Scholar 

  18. A. Guvendi, Int. J. Mod. Phys. A 36, 2150144 (2021)

    ADS  MathSciNet  Google Scholar 

  19. A. Guvendi, S.G. Dogan, Gen. Relativ. Gravit. 55, 6 (2023)

    ADS  Google Scholar 

  20. F. Ahmed, Ann. Phys. 404, 1–9 (2019)

    ADS  Google Scholar 

  21. F. Ahmed, Gen. Relativ. Gravit. 51, 69 (2019)

    ADS  Google Scholar 

  22. O. Mustafa, Eur. Phys. J. C 82, 82 (2022)

    ADS  Google Scholar 

  23. N. Candemir, Eur. Phys. J. Plus 136, 1077 (2021)

    Google Scholar 

  24. A. Guvendi, Eur. Phys. J. C 81, 100 (2021)

    ADS  Google Scholar 

  25. A. Guvendi, Y. Sucu, Phys. Lett. B 811, 135960 (2020)

    MathSciNet  Google Scholar 

  26. A. Guvendi, S. Zare, H. Hassanabadi, Phys. Dark Univ. 38, 101133 (2022)

    Google Scholar 

  27. A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)

    ADS  Google Scholar 

  28. C.W. Misner, J.A. Wheeler, Ann. Phys. 2, 525–603 (1957)

    ADS  Google Scholar 

  29. H.G. Ellis, J. Math. Phys. 14, 104–118 (1973)

    ADS  Google Scholar 

  30. T. Rojjanason, P. Burikham, K. Pimsamarn, Eur. Phys. J. C 79, 1–17 (2019)

    Google Scholar 

  31. M. Burgess, B. Jensen, Phys. Rev. A 48, 1861 (1993)

    ADS  Google Scholar 

  32. M.V. Entin, L.I. Magarill, Phys. Rev. B 64, 085330 (2001)

    ADS  Google Scholar 

  33. M. Cariglia, G.W. Gibbons, arXiv preprint arXiv:1806.05047 (2018)

  34. A. Lherbier, H. Terrones, J.C. Charlier, Phys. Rev. B 90, 125434 (2014)

    ADS  Google Scholar 

  35. J. Gonzalez, J. Herrero, Nucl. Phys. B 825, 426–443 (2010)

    ADS  Google Scholar 

  36. J.A. Huamaní, A.G.J. Vicente, A.E. Obispo, R.C. Montero, L.B. Castro, Ann. Phys. 534, 2200237 (2022)

    Google Scholar 

  37. S. Zare, M. de Montigny, H. Chen, H. Hassanabadi, arXiv preprint arXiv:2209.05630 [math-ph] (2022)

  38. M. Cvetič, G.W. Gibbons, Ann. Phys. 327, 2617–2626 (2012)

    ADS  Google Scholar 

  39. S.G. Dogan, A. Guvendi, Eur. Phys. J. Plus 138, 452 (2023)

    Google Scholar 

  40. S. Zare, H. Hassanabadi, A. Guvendi, Eur. Phys. J. Plus 137, 589 (2022)

    Google Scholar 

  41. A. Guvendi, R. Sahin, Y. Sucu, Sci. Rep. 9, 8960 (2019)

    ADS  Google Scholar 

  42. A. Guvendi, S.G. Dogan, Class. Quantum Gravity 40, 025003 (2022)

    ADS  Google Scholar 

  43. S.G. Dogan, Y. Sucu, Phys. Lett. B 797, 134839 (2019)

    MathSciNet  Google Scholar 

  44. A. Guvendi, A. Boumali, Eur. Phys. J. Plus 136, 1–18 (2021)

    Google Scholar 

  45. M.M. Cunha, H.S. Dias, E.O. Silva, Phys. Rev. D 102, 105020 (2020)

    ADS  MathSciNet  Google Scholar 

  46. G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists, Seventh Edition: A Comprehensive Guide, 1206 (Academic Press, Cambridge, 2012)

    Google Scholar 

  47. A. Cortijo, M.A.H. Vozmediano, Nucl. Phys. B 763, 293–308 (2007)

    ADS  Google Scholar 

  48. A. Cortijo, M.A.H. Vozmediano, Europhys. Lett. 77, 47002 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the kind reviewer for careful reading, constructive comments and important questions.

Funding

No funding received for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semra Gurtas Dogan.

Ethics declarations

Conflict of interest

No conflict of interest declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guvendi, A., Dogan, S.G. Fermion-Antifermion Pair Exposed to Magnetic Flux in an Optical Wormhole. Few-Body Syst 64, 65 (2023). https://doi.org/10.1007/s00601-023-01851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01851-8

Navigation