Skip to main content
Log in

Non-relativistic Mass Spectra Splitting of Heavy Mesons Under the Cornell Potential Perturbed by Spin–Spin, Spin–Orbit and Tensor Components

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this paper, we have obtained the analytical and numerical mass spectra of the charmonium and bottomonium mesons using the non-relativistic Schrödinger equation under a spin–spin, spin–orbit and tensor coupled Cornell potential energy. We adopted the Wentzel–Kramers–Brilluoin approximation method to obtain the energy bound equation in closed form. We obtained the potential free parameters by fitting the mass spectra equation to the experimental data of the Particle Data Group. The hyperfine mass splitting of the mesons are obtained for different singlet (\(s=0)\) and triplet (\(s=1)\) quantum states (\(n^{2s+1}l_{j})\). Also, the hyperfine multiplet splitting for \(l>0\) and total angular momentum quantum number \(j=l, j=l\pm 1\) were obtained. The results revealed that the charmonium masses \(\psi (n^{3}S_{1})\) and \(\eta _{c}(n^{1}S_{0})\) (\(n=2, 3,4,5,6)\) and bottomonium masses (\(\eta _{b}(n^{1}S_{0}))\) and \(\Upsilon (n^{3}S_{1})\) (\(n=2, 3, 4, 6)\) for the s-wave quantum states are in good agreement with the results obtained by other methods in the existing literature and available experimental data. For \(l>0\), the charmonia masses \(\chi _{c_{j}}(n^{3}P_{j})\) \(\psi _{1}\left( {1^{3}D}_{1} \right) \) and \(\psi _{2}\left( {2^{3}D}_{1} \right) \) agreed with the works obtained using other potential models and observed data. In comparison to experimental data, the total absolute deviation error of 3.21% and 1.06% was obtained for the respective charmonium and bottomonium masses. The proposed potential model provides a satisfying account for the mass spectra of the heavy mesons and may be extended to study other spectroscopic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availibility

The data used in this article were obtained from the analytical solutions and the cited references.

References

  1. O. Klein, Z. Angew. Phys. 37, 895 (1926)

    Google Scholar 

  2. V. Fock, Z. Angew. Phys. 38, 242 (1926)

    Google Scholar 

  3. W. Gordon, Z. Angew. Phys. 40, 117 (1926)

    Google Scholar 

  4. P.A.M. Dirac, Proc. Inst. Hist. Sci. Technol. 22, 32 (1959)

    Google Scholar 

  5. J. Duffin, Phys. Rev. 54, 1114 (1938)

    Article  ADS  Google Scholar 

  6. N. Kemmer, Proc. R. Soc. A. 166, 127 (1938)

    ADS  Google Scholar 

  7. G. Petiau, Acad. R. Belg. Cl. Sci. Mem. Collect. 8, 16 (1936)

    Google Scholar 

  8. E. Schrodinger, Ann. Phys. 79, 361 (1926)

    Article  Google Scholar 

  9. E.E. Salpeter, Phys. Rev. 87, 328 (1952)

    Article  ADS  Google Scholar 

  10. V. Kher, R. Chaturvedi, N. Devlani, A.K. Rai, EPJP. 137, 357 (2022)

    ADS  Google Scholar 

  11. C.A. Onate, I.B. Okon, U.E. Vicent, D.T. Bankole, E. Omugbe, Chem. Phy. 566, 111770 (2023)

    Article  Google Scholar 

  12. C.A. Onate, I.B. Okon, E.S. Eyube, U.E. Vicent, E. Omugbe, A.S. Olayinka, M.C. Oyeanju, O. Ebomwonyi, E.O. Odeyemi, Chem. Phys. Impact. 5, 100123 (2022)

    Article  Google Scholar 

  13. E.S. Eyube, P.P. Notani, Y. Dlama, E. Omugbe, C.A. Onate, I. B. Okon, G.G. Nyam, Y. Y. Jabil and M.M. Izam, Int. J. Quantum Chem. e27040 1 (2022)

  14. E.S. Eyube, C.A. Onate, E. Omugbe, C.M. Nwabueze, Chem. Phy. 560, 111572 (2022)

    Article  Google Scholar 

  15. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  16. G .R. Boroun and H. Abdolmalki, Phys. Scr. 80, 065003 (5pp) (2009). https://doi.org/10.1088/0031-8949/80/06/065003

  17. L. Cao, Y.-C. Yang, H. Chen, Few-Body Syst. 53, 327 (2012). https://doi.org/10.1007/s00601-012-0478-z

    Article  ADS  Google Scholar 

  18. T. Barnes, S. Godfrey, E.S. Swanson, Phys. Rev. D 72, 054026 (2005). https://doi.org/10.1103/PhysRevD.72.054026

    Article  ADS  Google Scholar 

  19. N. R. Soni, B. R. Joshi, R. P. Shah, H. R. Chauhan, J. N. Pandya Eur. Phys. J. C. 78, 592 (2018). https://doi.org/10.1140/epjc/s10052-018-6068-6

  20. E. Omugbe, O.E. Osafile, I.B. Okon, E.P.I nyang, E.S. William, A. Jahanshir, Few-Body Syst 63, 7 (2022)

  21. H. Mansour, A. Gamal, M. Abolmahassen, Adv. High Energy Phys. (2020). https://doi.org/10.1155/2020/2356436

    Article  Google Scholar 

  22. T. Bhavsar, M. Shah, P. C. Vinodkumar Eur. Phys. J. C. 78, 227 (2018). https://doi.org/10.1140/epjc/s10052-018-5694-3

  23. V. Kher, A.K. Rai, Chin. Phys. C 42(8), 083101 (2018). https://doi.org/10.1088/1674-1137/42/8/083101

    Article  ADS  Google Scholar 

  24. W.J. Deng, H. Liu, L.C. Gui, X.H. Zhong, Phys. Rev. D. 95, 074002 (2017). https://doi.org/10.1103/PhysRevD.95.074002

    Article  ADS  Google Scholar 

  25. P. Gupta, I. Mehrotra, J. Mod. Phys. 3, 1530 (2012). https://doi.org/10.4236/jmp.2012.310189

    Article  Google Scholar 

  26. M.S. Ali, A.M. Yasser, G.S. Hassan, C.C. Moustakidis, Quant. Phys. Lett. 5, 7 (2016)

  27. M.S. Ali, G.S. Hassan, A.M. Abdelmonem, S.K. Elshamndy, F. Elmasry, A.M. Yasser, J. Radiat. Res. Appl. Sci. 13, 233 (2020)

    Google Scholar 

  28. S. Patel, P.C. Vinodkumar, S. Bhatnagar, Chin. Phys. C 40, 053102 (2016)

    Article  Google Scholar 

  29. W. Lucha, F.F. Schöberl, Int. J. Mod. Phys. C 10, 607 (1999)

    Article  ADS  Google Scholar 

  30. M. Hruska, W. Keung, U. Sukhatme, Phy. Rev. A. 55, 3345 (1997)

    Article  ADS  Google Scholar 

  31. Y.P. Varshni, Phys. A. Math. Gen. 25, 5761 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  32. P. Roy, R. Roychoudhury, Y.P. Varshni, J. Phys. A Math. Gen. 21, 1589 (1988)

    Article  ADS  Google Scholar 

  33. S.K. Nikiforov, V.B. Uvarov, Spec. Funct. Math. Phys. (1988)

  34. C. Tezcan, R. Sever, Int. J. Theor. Phys. 48, 337 (2009)

    Article  Google Scholar 

  35. H. Ciftci, R.L. Hall N. Saad, J. Phys. A. Math. Gen. 36, 11807 (2003)

  36. H. Christiansen, L. Epele, H. Franchiotti, C.A. Garcia. Canal. Phys. Rev. A 40 176 (1989)

  37. S.H. Dong, Found. Phys. Lett. 15, 385 (2002)

    Article  MathSciNet  Google Scholar 

  38. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  39. S.H. Dong, Exact and proper quantization rules and Langer modification Wave Equations in Higher Dimensions (Springer, Dordrecht, 2011)

    Book  Google Scholar 

  40. R.E. Langer, Phys. Rev. 51, 669 (1937)

    Article  ADS  Google Scholar 

  41. E. Omugbe, O.E. Osafile, E.P. Inyang, A. Jahanshir, Phys. Scr. 96, 125408 (2021)

    Article  ADS  Google Scholar 

  42. E. Omugbe, O. E. Osafile, E. A. Enaibe, M. C. Onyeaju, E. Akpata, Quant. Stud. Math. Found. 8, 261 (2021)

  43. E. Omugbe, O.E. Osafile, I.B. Okon, Mol. Phys. e1970265 (2021)

  44. D.J. Griffiths, Introduction to quantum mechanics (Prentice Hall Inc., Upper Saddle River, 1995)

    MATH  Google Scholar 

  45. R. Lamsoudi, S. Laasri, M. Monkade, Mater. Sci. Energy Technol. 6, 35 (2023)

    Google Scholar 

  46. C.L. Pekeris, Phys. Rev. 45, 98–103 (1934)

    Article  ADS  Google Scholar 

  47. C. Ansler et al., Phys. Lett. B 667, 010001 (2008)

    ADS  Google Scholar 

  48. R.L. Workman et al., Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

  49. D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 71, 1825 (2011)

    Article  ADS  Google Scholar 

  50. S. Godfrey\(, \)K. Moats, Phys. Rev. D. 92, 054034 (2015)

  51. H. Mansour, A. Gamal, Result Phys. 33, 105203 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EO, EPI and IJN wrote the original draft. JNA, CM and RMO carried out editing and proofreading, CAO, AJ, ESE and MCO carried out the discussion of results. EO, IBO and SOO prepared data. All authors reviewed the manuscript.

Corresponding author

Correspondence to E. Omugbe.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interest regarding the publication of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omugbe, E., Aniezi, J.N., Inyang, E.P. et al. Non-relativistic Mass Spectra Splitting of Heavy Mesons Under the Cornell Potential Perturbed by Spin–Spin, Spin–Orbit and Tensor Components. Few-Body Syst 64, 66 (2023). https://doi.org/10.1007/s00601-023-01848-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01848-3

Navigation