Skip to main content
Log in

An Assessment of Pseudoscalar and Vector Meson Electromagnetic Form Factors

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Within the framework of the Dyson-Schwinger/Bethe-Salpeter equations of quantum chromodynamics, we investigate the electromagnetic form factors of pseudoscalar and vector mesons with different hidden-flavor, from light to heavy quark sectors, and compare the results with those of the single-pole vector meson dominance (VMD) model. It is found that the charge radius of vector meson is larger than that of its pseudoscalar counterpart. As the current-quark mass increases, the electric form factor of the vector meson tends to approach that of its pseudoscalar counterpart, and gradually deviates from the prediction of the VMD model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W. Altmannshofer, et al., PTEP 2019(12), 123C01 (2019). https://doi.org/10.1093/ptep/ptz106.[Erratum: PTEP 2020, 029201 (2020)]

  2. A.C. Aguilar et al., Eur. Phys. J. A 55(10), 190 (2019). https://doi.org/10.1140/epja/i2019-12885-0

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Horn, EPJ Web Conf. 137, 05005 (2017). https://doi.org/10.1051/epjconf/201713705005

    Article  Google Scholar 

  4. A.S. Miramontes, A. Bashir, Phys. Rev. D 107(1), 014016 (2023). https://doi.org/10.1103/PhysRevD.107.014016

    Article  ADS  Google Scholar 

  5. Y. Yang, D.Y. Chen, Z. Lu, Phys. Rev. D 100(7), 073007 (2019). https://doi.org/10.1103/PhysRevD.100.073007

    Article  ADS  Google Scholar 

  6. V. Sauli, Phys. Rev. D 106(3), 034030 (2022). https://doi.org/10.1103/PhysRevD.106.034030

    Article  ADS  MathSciNet  Google Scholar 

  7. J.J. Sakurai, Annals Phys. 11, 1 (1960). https://doi.org/10.1016/0003-4916(60)90126-3

    Article  ADS  Google Scholar 

  8. J.J. Sakurai, Phys. Rev. Lett. 22, 981 (1969). https://doi.org/10.1103/PhysRevLett.22.981

    Article  ADS  Google Scholar 

  9. H. Fraas, D. Schildknecht, Nucl. Phys. B 14, 543 (1969). https://doi.org/10.1016/0550-3213(69)90050-9

    Article  ADS  Google Scholar 

  10. O. Gryniuk, S. Joosten, Z.E. Meziani, M. Vanderhaeghen, Phys. Rev. D 102(1), 014016 (2020). https://doi.org/10.1103/PhysRevD.102.014016

    Article  ADS  Google Scholar 

  11. J.J. Wu, T.S.H. Lee, B.S. Zou, Phys. Rev. C 100(3), 035206 (2019). https://doi.org/10.1103/PhysRevC.100.035206

    Article  ADS  Google Scholar 

  12. I.I. Strakovsky, W.J. Briscoe, L. Pentchev, A. Schmidt, Phys. Rev. D 104(7), 074028 (2021). https://doi.org/10.1103/PhysRevD.104.074028

    Article  ADS  Google Scholar 

  13. J. Koponen, A.C. Zimermmane-Santos, C.T.H. Davies, G.P. Lepage, A.T. Lytle, Phys. Rev. D 96(5), 054501 (2017). https://doi.org/10.1103/PhysRevD.96.054501

    Article  ADS  Google Scholar 

  14. S. Aoki, G. Cossu, X. Feng, S. Hashimoto, T. Kaneko, J. Noaki, T. Onogi, Phys. Rev. D 93(3), 034504 (2016). https://doi.org/10.1103/PhysRevD.93.034504

    Article  ADS  Google Scholar 

  15. J.N. Hedditch, W. Kamleh, B.G. Lasscock, D.B. Leinweber, A.G. Williams, J.M. Zanotti, Phys. Rev. D 75, 094504 (2007). https://doi.org/10.1103/PhysRevD.75.094504

    Article  ADS  Google Scholar 

  16. B.W. Xiao, X. Qian, B.Q. Ma, Eur. Phys. J. A 15, 523 (2002). https://doi.org/10.1140/epja/i2002-10059-y

    Article  ADS  Google Scholar 

  17. H.M. Choi, C.R. Ji, Phys. Rev. D 70, 053015 (2004). https://doi.org/10.1103/PhysRevD.70.053015

    Article  ADS  Google Scholar 

  18. T.M. Aliev, M. Savci, Phys. Rev. D 70, 094007 (2004). https://doi.org/10.1103/PhysRevD.70.094007

    Article  ADS  Google Scholar 

  19. J. Bijnens, A. Khodjamirian, Eur. Phys. J. C 26, 67 (2002). https://doi.org/10.1140/epjc/s2002-01042-1

    Article  ADS  Google Scholar 

  20. A.H. Blin, B. Hiller, M. Schaden, Phys. A 331, 75 (1988)

    ADS  Google Scholar 

  21. Y.L. Luan, X.L. Chen, W.Z. Deng, Chin. Phys. C 39(11), 113103 (2015). https://doi.org/10.1088/1674-1137/39/11/113103

    Article  ADS  Google Scholar 

  22. P. Maris, P.C. Tandy, Phys. Rev. C 62, 055204 (2000). https://doi.org/10.1103/PhysRevC.62.055204

    Article  ADS  Google Scholar 

  23. C.D. Roberts, A.G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994). https://doi.org/10.1016/0146-6410(94)90049-3

    Article  ADS  Google Scholar 

  24. P. Maris, C.D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003). https://doi.org/10.1142/S0218301303001326

    Article  ADS  Google Scholar 

  25. P. Maris, C.D. Roberts, Phys. Rev. C 56, 3369 (1997). https://doi.org/10.1103/PhysRevC.56.3369

    Article  ADS  Google Scholar 

  26. M.S. Bhagwat, P. Maris, Phys. Rev. C 77, 025203 (2008). https://doi.org/10.1103/PhysRevC.77.025203

    Article  ADS  Google Scholar 

  27. M. Chen, M. Ding, L. Chang, C.D. Roberts, Phys. Rev. D 98(9), 091505 (2018). https://doi.org/10.1103/PhysRevD.98.091505

    Article  ADS  Google Scholar 

  28. Y.Z. Xu, D. Binosi, Z.F. Cui, B.L. Li, C.D. Roberts, S.S. Xu, H.S. Zong, Phys. Rev. D 100(11), 114038 (2019). https://doi.org/10.1103/PhysRevD.100.114038

    Article  ADS  Google Scholar 

  29. S.x. Qin, L. Chang, Y.x. Liu, C.D. Roberts, D.J. Wilson, Phys. Rev. C 85, 035202 (2012). https://doi.org/10.1103/PhysRevC.85.035202

  30. P. Qin, S.x. Qin, Y.x. Liu, Phys. Rev. D 101(11), 114014 (2020). https://doi.org/10.1103/PhysRevD.101.114014

  31. Z.Q. Yao, D. Binosi, Z.F. Cui, C.D. Roberts, Phys. Lett. B 818, 136344 (2021). https://doi.org/10.1016/j.physletb.2021.136344

    Article  Google Scholar 

  32. Y.Z. Xu, S. Chen, Z.Q. Yao, D. Binosi, Z.F. Cui, C.D. Roberts, Eur. Phys. J. C 81(10), 895 (2021). https://doi.org/10.1140/epjc/s10052-021-09673-w

    Article  ADS  Google Scholar 

  33. M.L. Du, V. Baru, F.K. Guo, C. Hanhart, U.G. Meißner, A. Nefediev, I. Strakovsky, Eur. Phys. J. C 80(11), 1053 (2020). https://doi.org/10.1140/epjc/s10052-020-08620-5

    Article  ADS  Google Scholar 

  34. L. Chang, Y.x. Liu, C.D. Roberts, Y.m. Shi, W.m. Sun, H.s. Zong, Phys. Rev. C 79, 035209 (2009). https://doi.org/10.1103/PhysRevC.79.035209

  35. M.S. Bhagwat, A. Holl, A. Krassnigg, C.D. Roberts, P.C. Tandy, Phys. Rev. C 70, 035205 (2004). https://doi.org/10.1103/PhysRevC.70.035205

    Article  ADS  Google Scholar 

  36. R.C. da Silveira, F.E. Serna, B. El-Bennich, Phys. Rev. D 107(3), 034021 (2023). https://doi.org/10.1103/PhysRevD.107.034021

    Article  ADS  Google Scholar 

  37. M. Tanabashi et al., Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

    Article  ADS  Google Scholar 

  38. C. McNeile, C.T.H. Davies, E. Follana, K. Hornbostel, G.P. Lepage, Phys. Rev. D 86, 074503 (2012). https://doi.org/10.1103/PhysRevD.86.074503

    Article  ADS  Google Scholar 

  39. B. Owen, W. Kamleh, D. Leinweber, B. Menadue, S. Mahbub, Phys. Rev. D 91(7), 074503 (2015). https://doi.org/10.1103/PhysRevD.91.074503

    Article  ADS  Google Scholar 

  40. J.J. Dudek, R.G. Edwards, D.G. Richards, Phys. Rev. D 73, 074507 (2006). https://doi.org/10.1103/PhysRevD.73.074507

    Article  ADS  Google Scholar 

  41. S.J. Brodsky, J.R. Hiller, Phys. Rev. D 46, 2141 (1992). https://doi.org/10.1103/PhysRevD.46.2141

    Article  ADS  Google Scholar 

  42. H. Haberzettl, Phys. Rev. D 100(3), 036008 (2019). https://doi.org/10.1103/PhysRevD.100.036008

    Article  ADS  Google Scholar 

  43. E. Ruiz Arriola, W. Broniowski, Phys. Rev. D 78, 034031 (2008). https://doi.org/10.1103/PhysRevD.78.034031

  44. P. Masjuan, E. Ruiz Arriola, W. Broniowski, Phys. Rev. D 87(1), 014005 (2013). https://doi.org/10.1103/PhysRevD.87.014005

Download references

Acknowledgements

This work has been partially funded by Ministerio Español de Ciencia e Innovación under grant No. PID2019-107844GB-C22; Junta de Andalucía under contract Nos. Operativo FEDER Andalucía 2014–2020 UHU-1264517, P18-FR-5057 and also PAIDI FQM-370.

Author information

Authors and Affiliations

Authors

Contributions

Yin-Zhen Xu and Jorge Segovia wrote the main manuscript text and Yin-Zhen Xu prepared figures 1–3. All authors reviewed the manuscript

Corresponding author

Correspondence to Yin-Zhen Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YZ., Segovia, J. An Assessment of Pseudoscalar and Vector Meson Electromagnetic Form Factors. Few-Body Syst 64, 62 (2023). https://doi.org/10.1007/s00601-023-01845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01845-6

Navigation